亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Natural language instructions are a powerful interface for editing the outputs of text-to-image diffusion models. However, several challenges need to be addressed: 1) underspecification (the need to model the implicit meaning of instructions) 2) grounding (the need to localize where the edit has to be performed), 3) faithfulness (the need to preserve the elements of the image not affected by the edit instruction). Current approaches focusing on image editing with natural language instructions rely on automatically generated paired data, which, as shown in our investigation, is noisy and sometimes nonsensical, exacerbating the above issues. Building on recent advances in segmentation, Chain-of-Thought prompting, and visual question answering, we significantly improve the quality of the paired data. In addition, we enhance the supervision signal by highlighting parts of the image that need to be changed by the instruction. The model fine-tuned on the improved data is capable of performing fine-grained object-centric edits better than state-of-the-art baselines, mitigating the problems outlined above, as shown by automatic and human evaluations. Moreover, our model is capable of generalizing to domains unseen during training, such as visual metaphors.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · Hugging Face · Processing(編程語言) · 可行 · GROUP ·
2023 年 12 月 15 日

Text simplification, crucial in natural language processing, aims to make texts more comprehensible, particularly for specific groups like visually impaired Spanish speakers, a less-represented language in this field. In Spanish, there are few datasets that can be used to create text simplification systems. Our research has the primary objective to develop a Spanish financial text simplification dataset. We created a dataset with 5,314 complex and simplified sentence pairs using established simplification rules. We also compared our dataset with the simplifications generated from GPT-3, Tuner, and MT5, in order to evaluate the feasibility of data augmentation using these systems. In this manuscript we present the characteristics of our dataset and the findings of the comparisons with other systems. The dataset is available at Hugging face, saul1917/FEINA.

Video scene graph generation (VidSGG) aims to identify objects in visual scenes and infer their relationships for a given video. It requires not only a comprehensive understanding of each object scattered on the whole scene but also a deep dive into their temporal motions and interactions. Inherently, object pairs and their relationships enjoy spatial co-occurrence correlations within each image and temporal consistency/transition correlations across different images, which can serve as prior knowledge to facilitate VidSGG model learning and inference. In this work, we propose a spatial-temporal knowledge-embedded transformer (STKET) that incorporates the prior spatial-temporal knowledge into the multi-head cross-attention mechanism to learn more representative relationship representations. Specifically, we first learn spatial co-occurrence and temporal transition correlations in a statistical manner. Then, we design spatial and temporal knowledge-embedded layers that introduce the multi-head cross-attention mechanism to fully explore the interaction between visual representation and the knowledge to generate spatial- and temporal-embedded representations, respectively. Finally, we aggregate these representations for each subject-object pair to predict the final semantic labels and their relationships. Extensive experiments show that STKET outperforms current competing algorithms by a large margin, e.g., improving the mR@50 by 8.1%, 4.7%, and 2.1% on different settings over current algorithms.

Safe deployment of large language models (LLMs) may benefit from a reliable method for assessing their generated content to determine when to abstain or to selectively generate. While likelihood-based metrics such as perplexity are widely employed, recent research has demonstrated the limitations of using sequence-level probability estimates given by LLMs as reliable indicators of generation quality. Conversely, LLMs have demonstrated strong calibration at the token level, particularly when it comes to choosing correct answers in multiple-choice questions or evaluating true/false statements. In this work, we reformulate open-ended generation tasks into token-level prediction tasks, and leverage LLMs' superior calibration at the token level. We instruct an LLM to self-evaluate its answers, employing either a multi-way comparison or a point-wise evaluation approach, with the option to include a ``None of the above'' option to express the model's uncertainty explicitly. We benchmark a range of scoring methods based on self-evaluation and evaluate their performance in selective generation using TruthfulQA and TL;DR. Through experiments with PaLM-2 and GPT-3, we demonstrate that self-evaluation based scores not only improve accuracy, but also correlate better with the overall quality of generated content.

Prompt recently have become an effective linguistic tool on utilizing the pre-trained language models. However, in few-shot scenarios, subtle changes of prompt's design always make the result widely different, and the prompt design is also easy to overfit the current limited samples. To alleviate this, we explore how to utilize suitable contrastive samples and multiple contrastive learning methods to realize a more robust prompt's representation. Therefore, the contrastive prompt model ConsPrompt combining with prompt encoding network, contrastive sampling modules, and contrastive scoring modules are introduced to realize differential contrastive learning. Our results exhibit the state-of-the-art performance in different few-shot settings, and the ablation experiments also certificate the effectiveness in utilizing multi-degree contrastive learning in prompt-based fine-tuning process.

Multi-modal large language models (MLLMs) have been shown to efficiently integrate natural language with visual information to handle multi-modal tasks. However, MLLMs still face a fundamental limitation of hallucinations, where they tend to generate erroneous or fabricated information. In this paper, we address hallucinations in MLLMs from a novel perspective of representation learning. We first analyzed the representation distribution of textual and visual tokens in MLLM, revealing two important findings: 1) there is a significant gap between textual and visual representations, indicating unsatisfactory cross-modal representation alignment; 2) representations of texts that contain and do not contain hallucinations are entangled, making it challenging to distinguish them. These two observations inspire us with a simple yet effective method to mitigate hallucinations. Specifically, we introduce contrastive learning into MLLMs and use text with hallucination as hard negative examples, naturally bringing representations of non-hallucinative text and visual samples closer while pushing way representations of non-hallucinating and hallucinative text. We evaluate our method quantitatively and qualitatively, showing its effectiveness in reducing hallucination occurrences and improving performance across multiple benchmarks. On the MMhal-Bench benchmark, our method obtains a 34.66% /29.5% improvement over the baseline MiniGPT-4/LLaVA.

In conventional multiple-input multiple-output (MIMO) communication systems, the positions of antennas are fixed. To take full advantage of spatial degrees of freedom, a new technology called fluid antenna (FA) is proposed to obtain higher achievable rate and diversity gain. Most existing works on FA exploit instantaneous channel state information (CSI). However, in FA-assisted systems, it is difficult to obtain instantaneous CSI since changes in the antenna position will lead to channel variation. In this letter, we investigate a FA-assisted MIMO system using relatively slow-varying statistical CSI. Specifically, in the criterion of rate maximization, we propose an algorithmic framework for transmit precoding and transmit/receive FAs position designs with statistical CSI. Simulation results show that our proposed algorithm in FA-assisted systems significantly outperforms baselines in terms of rate performance.

Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this paper, we introduce a taxonomy of explainability techniques and provide a structured overview of methods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations, and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional machine learning models.

The emergence of large language models (LLMs) has substantially influenced natural language processing, demonstrating exceptional results across various tasks. In this study, we employ ``Introspective Tips" to facilitate LLMs in self-optimizing their decision-making. By introspectively examining trajectories, LLM refines its policy by generating succinct and valuable tips. Our method enhances the agent's performance in both few-shot and zero-shot learning situations by considering three essential scenarios: learning from the agent's past experiences, integrating expert demonstrations, and generalizing across diverse games. Importantly, we accomplish these improvements without fine-tuning the LLM parameters; rather, we adjust the prompt to generalize insights from the three aforementioned situations. Our framework not only supports but also emphasizes the advantage of employing LLM in in-contxt decision-making. Experiments involving over 100 games in TextWorld illustrate the superior performance of our approach.

Knowledge graphs (KGs) serve as useful resources for various natural language processing applications. Previous KG completion approaches require a large number of training instances (i.e., head-tail entity pairs) for every relation. The real case is that for most of the relations, very few entity pairs are available. Existing work of one-shot learning limits method generalizability for few-shot scenarios and does not fully use the supervisory information; however, few-shot KG completion has not been well studied yet. In this work, we propose a novel few-shot relation learning model (FSRL) that aims at discovering facts of new relations with few-shot references. FSRL can effectively capture knowledge from heterogeneous graph structure, aggregate representations of few-shot references, and match similar entity pairs of reference set for every relation. Extensive experiments on two public datasets demonstrate that FSRL outperforms the state-of-the-art.

We consider the problem of referring image segmentation. Given an input image and a natural language expression, the goal is to segment the object referred by the language expression in the image. Existing works in this area treat the language expression and the input image separately in their representations. They do not sufficiently capture long-range correlations between these two modalities. In this paper, we propose a cross-modal self-attention (CMSA) module that effectively captures the long-range dependencies between linguistic and visual features. Our model can adaptively focus on informative words in the referring expression and important regions in the input image. In addition, we propose a gated multi-level fusion module to selectively integrate self-attentive cross-modal features corresponding to different levels in the image. This module controls the information flow of features at different levels. We validate the proposed approach on four evaluation datasets. Our proposed approach consistently outperforms existing state-of-the-art methods.

北京阿比特科技有限公司