亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Partial differential equations (PDEs) are ubiquitous in science and engineering. Prior quantum algorithms for solving the system of linear algebraic equations obtained from discretizing a PDE have a computational complexity that scales at least linearly with the condition number $\kappa$ of the matrices involved in the computation. For many practical applications, $\kappa$ scales polynomially with the size $N$ of the matrices, rendering a polynomial-in-$N$ complexity for these algorithms. Here we present a quantum algorithm with a complexity that is polylogarithmic in $N$ but is independent of $\kappa$ for a large class of PDEs. Our algorithm generates a quantum state that enables extracting features of the solution. Central to our methodology is using a wavelet basis as an auxiliary system of coordinates in which the condition number of associated matrices is independent of $N$ by a simple diagonal preconditioner. We present numerical simulations showing the effect of the wavelet preconditioner for several differential equations. Our work could provide a practical way to boost the performance of quantum-simulation algorithms where standard methods are used for discretization.

相關內容

In this work we extend the shifted Laplacian approach to the elastic Helmholtz equation. The shifted Laplacian multigrid method is a common preconditioning approach for the discretized acoustic Helmholtz equation. In some cases, like geophysical seismic imaging, one needs to consider the elastic Helmholtz equation, which is harder to solve: it is three times larger and contains a nullity-rich grad-div term. These properties make the solution of the equation more difficult for multigrid solvers. The key idea in this work is combining the shifted Laplacian with approaches for linear elasticity. We provide local Fourier analysis and numerical evidence that the convergence rate of our method is independent of the Poisson's ratio. Moreover, to better handle the problem size, we complement our multigrid method with the domain decomposition approach, which works in synergy with the local nature of the shifted Laplacian, so we enjoy the advantages of both methods without sacrificing performance. We demonstrate the efficiency of our solver on 2D and 3D problems in heterogeneous media.

We propose a new method for the construction of layer-adapted meshes for singularly perturbed differential equations (SPDEs), based on mesh partial differential equations (MPDEs) that incorporate \emph{a posteriori} solution information. There are numerous studies on the development of parameter robust numerical methods for SPDEs that depend on the layer-adapted mesh of Bakhvalov. In~\citep{HiMa2021}, a novel MPDE-based approach for constructing a generalisation of these meshes was proposed. Like with most layer-adapted mesh methods, the algorithms in that article depended on detailed derivations of \emph{a priori} bounds on the SPDE's solution and its derivatives. In this work we extend that approach so that it instead uses \emph{a posteriori} computed estimates of the solution. We present detailed algorithms for the efficient implementation of the method, and numerical results for the robust solution of two-parameter reaction-convection-diffusion problems, in one and two dimensions. We also provide full FEniCS code for a one-dimensional example.

Lyapunov functions play a vital role in the context of control theory for nonlinear dynamical systems. Besides its classical use for stability analysis, Lyapunov functions also arise in iterative schemes for computing optimal feedback laws such as the well-known policy iteration. In this manuscript, the focus is on the Lyapunov function of a nonlinear autonomous finite-dimensional dynamical system which will be rewritten as an infinite-dimensional linear system using the Koopman or composition operator. Since this infinite-dimensional system has the structure of a weak-* continuous semigroup, in a specially weighted $\mathrm{L}^p$-space one can establish a connection between the solution of an operator Lyapunov equation and the desired Lyapunov function. It will be shown that the solution to this operator equation attains a rapid eigenvalue decay which justifies finite rank approximations with numerical methods. The potential benefit for numerical computations will be demonstrated with two short examples.

Regularized generalized canonical correlation analysis (RGCCA) is a generalization of regularized canonical correlation analysis to three or more sets of variables, which is a component-based approach aiming to study the relationships between several sets of variables. Sparse generalized canonical correlation analysis (SGCCA) (proposed in Tenenhaus et al. (2014)), combines RGCCA with an `1-penalty, in which blocks are not necessarily fully connected, makes SGCCA a flexible method for analyzing a wide variety of practical problems, such as biology, chemistry, sensory analysis, marketing, food research, etc. In Tenenhaus et al. (2014), an iterative algorithm for SGCCA was designed based on the solution to the subproblem (LM-P1 for short) of maximizing a linear function on the intersection of an `1-norm ball and a unit `2-norm sphere proposed in Witten et al. (2009). However, the solution to the subproblem (LM-P1) proposed in Witten et al. (2009) is not correct, which may become the reason that the iterative algorithm for SGCCA is slow and not always convergent. For this, we first characterize the solution to the subproblem LM-P1, and the subproblems LM-P2 and LM-P3, which maximize a linear function on the intersection of an `1-norm sphere and a unit `2-norm sphere, and an `1-norm ball and a unit `2-norm sphere, respectively. Then we provide more efficient block coordinate descent (BCD) algorithms for SGCCA and its two variants, called SGCCA-BCD1, SGCCA-BCD2 and SGCCA-BCD3, corresponding to the subproblems LM-P1, LM-P2 and LM-P3, respectively, prove that they all globally converge to their stationary points. We further propose gradient projected (GP) methods for SGCCA and its two variants when using the Horst scheme, called SGCCA-GP1, SGCCA-GP2 and SGCCA-GP3, corresponding to the subproblems LM-P1, LM-P2 and LM-P3, respectively, and prove that they all

We introduce a relaxation for homomorphism problems that combines semidefinite programming with linear Diophantine equations, and propose a framework for the analysis of its power based on the spectral theory of association schemes. We use this framework to establish an unconditional lower bound against the semidefinite programming + linear equations model, by showing that the relaxation does not solve the approximate graph homomorphism problem and thus, in particular, the approximate graph colouring problem.

We propose a new variable selection procedure for a functional linear model with multiple scalar responses and multiple functional predictors. This method is based on basis expansions of the involved functional predictors and coefficients that lead to a multivariate linear regression model. Then a criterion by means of which the variable selection problem reduces to that of estimating a suitable set is introduced. Estimation of this set is achieved by using appropriate penalizations of estimates of this criterion, so leading to our proposal. A simulation study that permits to investigate the effectiveness of the proposed approach and to compare it with existing methods is given.

In this paper, we examine a finite element approximation of the steady $p(\cdot)$-Navier-Stokes equations ($p(\cdot)$ is variable dependent) and prove orders of convergence by assuming natural fractional regularity assumptions on the velocity vector field and the kinematic pressure. Compared to previous results, we treat the convective term and employ a more practicable discretization of the power-law index $p(\cdot)$. Numerical experiments confirm the quasi-optimality of the a priori error estimates (for the velocity) with respect to fractional regularity assumptions on the velocity vector field and the kinematic pressure.

We construct a Convolution Quadrature (CQ) scheme for the quasilinear subdiffusion equation and supply it with the fast and oblivious implementation. In particular we find a condition for the CQ to be admissible and discretize the spatial part of the equation with the Finite Element Method. We prove the unconditional stability and convergence of the scheme and find a bound on the error. As a passing result, we also obtain a discrete Gronwall inequality for the CQ, which is a crucial ingredient of our convergence proof based on the energy method. The paper is concluded with numerical examples verifying convergence and computation time reduction when using fast and oblivious quadrature.

Multivariate imputation by chained equations (MICE) is one of the most popular approaches to address missing values in a data set. This approach requires specifying a univariate imputation model for every variable under imputation. The specification of which predictors should be included in these univariate imputation models can be a daunting task. Principal component analysis (PCA) can simplify this process by replacing all of the potential imputation model predictors with a few components summarizing their variance. In this article, we extend the use of PCA with MICE to include a supervised aspect whereby information from the variables under imputation is incorporated into the principal component estimation. We conducted an extensive simulation study to assess the statistical properties of MICE with different versions of supervised dimensionality reduction and we compared them with the use of classical unsupervised PCA as a simpler dimensionality reduction technique.

A new numerical domain decomposition method is proposed for solving elliptic equations on compact Riemannian manifolds. The advantage of this method is to avoid global triangulations or grids on manifolds. Our method is numerically tested on some $4$-dimensional manifolds such as the unit sphere $S^{4}$, the complex projective space $\mathbb{CP}^{2}$ and the product manifold $S^{2} \times S^{2}$.

北京阿比特科技有限公司