亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Content caching at the network edge has been considered an effective way of mitigating backhaul load and improving user experience. Caching efficiency can be enhanced by content recommendation and by keeping the information fresh. To the best of our knowledge, there is no work that jointly takes into account these aspects. By content recommendation, a requested content that is not in the cache can be alternatively satisfied by a related cached content recommended by the system. Information freshness can be quantified by age of information (AoI). We address, optimal scheduling of cache updates for a time-slotted system accounting for content recommendation and AoI. For each content, there are requests that need to be satisfied, and there is a cost function capturing the freshness of information. We present the following contributions. First, we prove that the problem is NP-hard. Second, we derive an integer linear formulation, by which the optimal solution can be obtained for small-scale scenarios. Third, we develop an algorithm based on Lagrangian decomposition. Fourth, we develop efficient algorithms for solving the resulting subproblems. Our algorithm computes a bound that can be used to evaluate the performance of any suboptimal solution. Finally, we conduct simulations to show the effectiveness of our algorithm in comparison to a greedy schedule.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 代價 · 服務器 · Performer · 在線 ·
2022 年 1 月 27 日

We propose throughput and cost optimal job scheduling algorithms in cloud computing platforms offering Infrastructure as a Service. We first consider online migration and propose job scheduling algorithms to minimize job migration and server running costs. We consider algorithms that assume knowledge of job-size on arrival of jobs. We characterize the optimal cost subject to system stability. We develop a drift-plus-penalty framework based algorithm that can achieve optimal cost arbitrarily closely. Specifically this algorithm yields a trade-off between delay and costs. We then relax the job-size knowledge assumption and give an algorithm that uses readily offered service to the jobs. We show that this algorithm gives order-wise identical cost as the job size based algorithm. Later, we consider offline job migration that incurs migration delays. We again present throughput optimal algorithms that minimize server running cost. We illustrate the performance of the proposed algorithms and compare these to the existing algorithms via simulation.

This paper addresses the problem of determining all optimal integer solutions of a linear integer network flow problem, which we call the all optimal integer flow (AOF) problem. We derive an O(F (m + n) + mn + M ) time algorithm to determine all F many optimal integer flows in a directed network with n nodes and m arcs, where M is the best time needed to find one minimum cost flow. We remark that stopping Hamacher's well-known method for the determination of the K best integer flows at the first sub-optimal flow results in an algorithm with a running time of O(F m(n log n + m) + M ) for solving the AOF problem. Our improvement is essentially made possible by replacing the shortest path sub-problem with a more efficient way to determine a so called proper zero cost cycle using a modified depth-first search technique. As a byproduct, our analysis yields an enhanced algorithm to determine the K best integer flows that runs in O(Kn3 + M ). Besides, we give lower and upper bounds for the number of all optimal integer and feasible integer solutions. Our bounds are based on the fact that any optimal solution can be obtained by an initial optimal tree solution plus a conical combination of incidence vectors of all induced cycles with bounded coefficients.

Coded caching has been shown as a promissing method to reduce the network load in peak-traffic hours. In the coded caching literature, the notion of privacy is considered only against demands. On the motivation that multi-round transmissions almost appear everywhere in real communication systems, this paper formulates the coded caching problem with private demands and caches. Only one existing private caching scheme, which is based on introducing virtual users, can preserve the privacy of demands and caches simultaneously, but with an extremely large subpacketization exponential to the product of the numbers of users and files in the system. In order to reduce the subpacketization while satisfying the privacy constraint, we propose a novel approach which constructs private coded caching schemes through private information retrieval (PIR). Based on this approach, we propose novel schemes with private demands and caches which have a subpacketization level in the order exponential to $K$ (number of users) against $NK$ in the virtual user scheme where $N$ stands for the numbers of files. As a by-product, for the coded caching problem with private demands, a private coded caching scheme could be obtained from the proposed approach, which generally improves the memory-load tradeoff of the private coded caching scheme by Yan and Tuninetti.

Coded caching utilizes pre-fetching during off-peak hours and multi-casting for delivery in order to balance the traffic load in communication networks. Several works have studied the achievable peak and average rates under different conditions: variable file lengths or popularities, variable cache sizes, decentralized networks, etc. However, very few have considered the possibility of heterogeneous user profiles, despite modern content providers are investing heavily in categorizing users according to their habits and preferences. This paper proposes three coded caching schemes with uncoded pre-fetching for scenarios where end users are grouped into classes with different file demand sets (FDS). One scheme ignores the difference between the classes, another ignores the intersection between them and the third decouples the delivery of files common to all FDS from those unique to a single class. The transmission rates of the three schemes are compared with a lower bound to evaluate their gap to optimality, and with each other to show that each scheme can outperform the other two when certain conditions are met.

Explaining to users why some items are recommended is critical, as it can help users to make better decisions, increase their satisfaction, and gain their trust in recommender systems (RS). However, existing explainable RS usually consider explanation as a side output of the recommendation model, which has two problems: (1) it is difficult to evaluate the produced explanations because they are usually model-dependent, and (2) as a result, how the explanations impact the recommendation performance is less investigated. In this paper, explaining recommendations is formulated as a ranking task, and learned from data, similar to item ranking for recommendation. This makes it possible for standard evaluation of explanations via ranking metrics (e.g., NDCG). Furthermore, this paper extends traditional item ranking to an item-explanation joint-ranking formalization to study if purposely selecting explanations could reach certain learning goals, e.g., improving recommendation performance. A great challenge, however, is that the sparsity issue in the user-item-explanation data would be inevitably severer than that in traditional user-item interaction data, since not every user-item pair can be associated with all explanations. To mitigate this issue, this paper proposes to perform two sets of matrix factorization by considering the ternary relationship as two groups of binary relationships. Experiments on three large datasets verify the solution's effectiveness on both explanation ranking and item recommendation.

To solve the information explosion problem and enhance user experience in various online applications, recommender systems have been developed to model users preferences. Although numerous efforts have been made toward more personalized recommendations, recommender systems still suffer from several challenges, such as data sparsity and cold start. In recent years, generating recommendations with the knowledge graph as side information has attracted considerable interest. Such an approach can not only alleviate the abovementioned issues for a more accurate recommendation, but also provide explanations for recommended items. In this paper, we conduct a systematical survey of knowledge graph-based recommender systems. We collect recently published papers in this field and summarize them from two perspectives. On the one hand, we investigate the proposed algorithms by focusing on how the papers utilize the knowledge graph for accurate and explainable recommendation. On the other hand, we introduce datasets used in these works. Finally, we propose several potential research directions in this field.

We present collaborative similarity embedding (CSE), a unified framework that exploits comprehensive collaborative relations available in a user-item bipartite graph for representation learning and recommendation. In the proposed framework, we differentiate two types of proximity relations: direct proximity and k-th order neighborhood proximity. While learning from the former exploits direct user-item associations observable from the graph, learning from the latter makes use of implicit associations such as user-user similarities and item-item similarities, which can provide valuable information especially when the graph is sparse. Moreover, for improving scalability and flexibility, we propose a sampling technique that is specifically designed to capture the two types of proximity relations. Extensive experiments on eight benchmark datasets show that CSE yields significantly better performance than state-of-the-art recommendation methods.

The slate recommendation problem aims to find the "optimal" ordering of a subset of documents to be presented on a surface that we call "slate". The definition of "optimal" changes depending on the underlying applications but a typical goal is to maximize user engagement with the slate. Solving this problem at scale is hard due to the combinatorial explosion of documents to show and their display positions on the slate. In this paper, we introduce Slate Conditional Variational Auto-Encoders (Slate-CVAE) to generate optimal slates. To the best of our knowledge, this is the first conditional generative model that provides a unified framework for slate recommendation by direct generation. Slate-CVAE automatically takes into account the format of the slate and any biases that the representation causes, thus truly proposing the optimal slate. Additionally, to deal with large corpora of documents, we present a novel approach that uses pretrained document embeddings combined with a soft-nearest-neighbors layer within our CVAE model. Experiments show that on the simulated and real-world datasets, Slate-CVAE outperforms recommender systems that consists of greedily ranking documents by a significant margin while remaining scalable.

Personalized recommendation systems (RS) are extensively used in many services. Many of these are based on learning algorithms where the RS uses the recommendation history and the user response to learn an optimal strategy. Further, these algorithms are based on the assumption that the user interests are rigid. Specifically, they do not account for the effect of learning strategy on the evolution of the user interests. In this paper we develop influence models for a learning algorithm that is used to optimally recommend websites to web users. We adapt the model of \cite{Ioannidis10} to include an item-dependent reward to the RS from the suggestions that are accepted by the user. For this we first develop a static optimisation scheme when all the parameters are known. Next we develop a stochastic approximation based learning scheme for the RS to learn the optimal strategy when the user profiles are not known. Finally, we describe several user-influence models for the learning algorithm and analyze their effect on the steady user interests and on the steady state optimal strategy as compared to that when the users are not influenced.

Recommender systems play a crucial role in mitigating the problem of information overload by suggesting users' personalized items or services. The vast majority of traditional recommender systems consider the recommendation procedure as a static process and make recommendations following a fixed strategy. In this paper, we propose a novel recommender system with the capability of continuously improving its strategies during the interactions with users. We model the sequential interactions between users and a recommender system as a Markov Decision Process (MDP) and leverage Reinforcement Learning (RL) to automatically learn the optimal strategies via recommending trial-and-error items and receiving reinforcements of these items from users' feedbacks. In particular, we introduce an online user-agent interacting environment simulator, which can pre-train and evaluate model parameters offline before applying the model online. Moreover, we validate the importance of list-wise recommendations during the interactions between users and agent, and develop a novel approach to incorporate them into the proposed framework LIRD for list-wide recommendations. The experimental results based on a real-world e-commerce dataset demonstrate the effectiveness of the proposed framework.

北京阿比特科技有限公司