亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Pushing is a simple yet effective skill for robots to interact with and further change the environment. Related work has been mostly focused on utilizing it as a non-prehensile manipulation primitive for a robotic manipulator. However, it can also be beneficial for low-cost mobile robots that are not equipped with a manipulator. This work tackles the general problem of controlling a team of mobile robots to push collaboratively polytopic objects within complex obstacle-cluttered environments. It incorporates several characteristic challenges for contact-rich tasks such as the hybrid switching among different contact modes and under-actuation due to constrained contact forces. The proposed method is based on hybrid optimization over a sequence of possible modes and the associated pushing forces, where (i) a set of sufficient modes is generated with a multi-directional feasibility estimation, based on quasi-static analyses for general objects and any number of robots; (ii) a hierarchical hybrid search algorithm is designed to iteratively decompose the navigation path via arc segments and select the optimal parameterized mode; and (iii) a nonlinear model predictive controller is proposed to track the desired pushing velocities adaptively online for each robot. The proposed framework is complete under mild assumptions. Its efficiency and effectiveness are validated in high-fidelity simulations and hardware experiments. Robustness to motion and actuation uncertainties is also demonstrated.

相關內容

機(ji)(ji)(ji)器(qi)(qi)(qi)人(ren)(英語:Robot)包括一(yi)(yi)切模(mo)擬人(ren)類行(xing)為或(huo)思想與模(mo)擬其(qi)他生物的(de)機(ji)(ji)(ji)械(如機(ji)(ji)(ji)器(qi)(qi)(qi)狗,機(ji)(ji)(ji)器(qi)(qi)(qi)貓等(deng))。狹義(yi)上(shang)對機(ji)(ji)(ji)器(qi)(qi)(qi)人(ren)的(de)定(ding)義(yi)還有很(hen)多分類法及(ji)爭(zheng)議(yi),有些電(dian)(dian)腦程序甚至也被(bei)稱為機(ji)(ji)(ji)器(qi)(qi)(qi)人(ren)。在當代工業中,機(ji)(ji)(ji)器(qi)(qi)(qi)人(ren)指(zhi)能自動(dong)運(yun)行(xing)任務的(de)人(ren)造機(ji)(ji)(ji)器(qi)(qi)(qi)設(she)備,用以取代或(huo)協助人(ren)類工作,一(yi)(yi)般會是(shi)機(ji)(ji)(ji)電(dian)(dian)設(she)備,由計算機(ji)(ji)(ji)程序或(huo)是(shi)電(dian)(dian)子電(dian)(dian)路控制(zhi)。

知識薈萃

精品入門和進階教程、論文和代(dai)碼整理(li)等

更多

查(cha)看相關VIP內容、論文、資(zi)訊等

The accumulation of litter is increasing in many places and is consequently becoming a problem that must be dealt with. In this paper, we present a manipulator robotic system to collect litter in outdoor environments. This system has three functionalities. Firstly, it uses colour images to detect and recognise litter comprising different materials. Secondly, depth data are combined with pixels of waste objects to compute a 3D location and segment three-dimensional point clouds of the litter items in the scene. The grasp in 3 Degrees of Freedom (DoFs) is then estimated for a robot arm with a gripper for the segmented cloud of each instance of waste. Finally, two tactile-based algorithms are implemented and then employed in order to provide the gripper with a sense of touch. This work uses two low-cost visual-based tactile sensors at the fingertips. One of them addresses the detection of contact (which is obtained from tactile images) between the gripper and solid waste, while another has been designed to detect slippage in order to prevent the objects grasped from falling. Our proposal was successfully tested by carrying out extensive experimentation with different objects varying in size, texture, geometry and materials in different outdoor environments (a tiled pavement, a surface of stone/soil, and grass). Our system achieved an average score of 94% for the detection and Collection Success Rate (CSR) as regards its overall performance, and of 80% for the collection of items of litter at the first attempt.

Mirroring the complex structures and diverse functions of natural organisms is a long-standing challenge in robotics. Modern fabrication techniques have dramatically expanded feasible hardware, yet deploying these systems requires control software to translate desired motions into actuator commands. While conventional robots can easily be modeled as rigid links connected via joints, it remains an open challenge to model and control bio-inspired robots that are often multi-material or soft, lack sensing capabilities, and may change their material properties with use. Here, we introduce Neural Jacobian Fields, an architecture that autonomously learns to model and control robots from vision alone. Our approach makes no assumptions about the robot's materials, actuation, or sensing, requires only a single camera for control, and learns to control the robot without expert intervention by observing the execution of random commands. We demonstrate our method on a diverse set of robot manipulators, varying in actuation, materials, fabrication, and cost. Our approach achieves accurate closed-loop control and recovers the causal dynamic structure of each robot. By enabling robot control with a generic camera as the only sensor, we anticipate our work will dramatically broaden the design space of robotic systems and serve as a starting point for lowering the barrier to robotic automation.

Nonlinear model predictive control (NMPC) has proven to be an effective control method, but it is expensive to compute. This work demonstrates the use of hardware FPGA neural network controllers trained to imitate NMPC with supervised learning. We use these Neural Controllers (NCs) implemented on inexpensive embedded FPGA hardware for high frequency control on physical cartpole and F1TENTH race car. Our results show that the NCs match the control performance of the NMPCs in simulation and outperform it in reality, due to the faster control rate that is afforded by the quick FPGA NC inference. We demonstrate kHz control rates for a physical cartpole and offloading control to the FPGA hardware on the F1TENTH car. Code and hardware implementation for this paper are available at // github.com/SensorsINI/Neural-Control-Tools.

Imitation learning is one of the methods for reproducing human demonstration adaptively in robots. So far, it has been found that generalization ability of the imitation learning enables the robots to perform tasks adaptably in untrained environments. However, motion styles such as motion trajectory and the amount of force applied depend largely on the dataset of human demonstration, and settle down to an average motion style. In this study, we propose a method that adds parametric bias to the conventional imitation learning network and can add constraints to the motion style. By experiments using PR2 and the musculoskeletal humanoid MusashiLarm, we show that it is possible to perform tasks by changing its motion style as intended with constraints on joint velocity, muscle length velocity, and muscle tension.

Animals learn to adapt speed of their movements to their capabilities and the environment they observe. Mobile robots should also demonstrate this ability to trade-off aggressiveness and safety for efficiently accomplishing tasks. The aim of this work is to endow flight vehicles with the ability of speed adaptation in prior unknown and partially observable cluttered environments. We propose a hierarchical learning and planning framework where we utilize both well-established methods of model-based trajectory generation and trial-and-error that comprehensively learns a policy to dynamically configure the speed constraint. Technically, we use online reinforcement learning to obtain the deployable policy. The statistical results in simulation demonstrate the advantages of our method over the constant speed constraint baselines and an alternative method in terms of flight efficiency and safety. In particular, the policy behaves perception awareness, which distinguish it from alternative approaches. By deploying the policy to hardware, we verify that these advantages can be brought to the real world.

As artificial intelligence (AI) models continue to scale up, they are becoming more capable and integrated into various forms of decision-making systems. For models involved in moral decision-making, also known as artificial moral agents (AMA), interpretability provides a way to trust and understand the agent's internal reasoning mechanisms for effective use and error correction. In this paper, we provide an overview of this rapidly-evolving sub-field of AI interpretability, introduce the concept of the Minimum Level of Interpretability (MLI) and recommend an MLI for various types of agents, to aid their safe deployment in real-world settings.

When is heterogeneity in the composition of an autonomous robotic team beneficial and when is it detrimental? We investigate and answer this question in the context of a minimally viable model that examines the role of heterogeneous speeds in perimeter defense problems, where defenders share a total allocated speed budget. We consider two distinct problem settings and develop strategies based on dynamic programming and on local interaction rules. We present a theoretical analysis of both approaches and our results are extensively validated using simulations. Interestingly, our results demonstrate that the viability of heterogeneous teams depends on the amount of information available to the defenders. Moreover, our results suggest a universality property: across a wide range of problem parameters the optimal ratio of the speeds of the defenders remains nearly constant.

Deep neural networks have revolutionized many machine learning tasks in power systems, ranging from pattern recognition to signal processing. The data in these tasks is typically represented in Euclidean domains. Nevertheless, there is an increasing number of applications in power systems, where data are collected from non-Euclidean domains and represented as the graph-structured data with high dimensional features and interdependency among nodes. The complexity of graph-structured data has brought significant challenges to the existing deep neural networks defined in Euclidean domains. Recently, many studies on extending deep neural networks for graph-structured data in power systems have emerged. In this paper, a comprehensive overview of graph neural networks (GNNs) in power systems is proposed. Specifically, several classical paradigms of GNNs structures (e.g., graph convolutional networks, graph recurrent neural networks, graph attention networks, graph generative networks, spatial-temporal graph convolutional networks, and hybrid forms of GNNs) are summarized, and key applications in power systems such as fault diagnosis, power prediction, power flow calculation, and data generation are reviewed in detail. Furthermore, main issues and some research trends about the applications of GNNs in power systems are discussed.

Spectral clustering (SC) is a popular clustering technique to find strongly connected communities on a graph. SC can be used in Graph Neural Networks (GNNs) to implement pooling operations that aggregate nodes belonging to the same cluster. However, the eigendecomposition of the Laplacian is expensive and, since clustering results are graph-specific, pooling methods based on SC must perform a new optimization for each new sample. In this paper, we propose a graph clustering approach that addresses these limitations of SC. We formulate a continuous relaxation of the normalized minCUT problem and train a GNN to compute cluster assignments that minimize this objective. Our GNN-based implementation is differentiable, does not require to compute the spectral decomposition, and learns a clustering function that can be quickly evaluated on out-of-sample graphs. From the proposed clustering method, we design a graph pooling operator that overcomes some important limitations of state-of-the-art graph pooling techniques and achieves the best performance in several supervised and unsupervised tasks.

Machine learning techniques have deeply rooted in our everyday life. However, since it is knowledge- and labor-intensive to pursue good learning performance, human experts are heavily involved in every aspect of machine learning. In order to make machine learning techniques easier to apply and reduce the demand for experienced human experts, automated machine learning (AutoML) has emerged as a hot topic with both industrial and academic interest. In this paper, we provide an up to date survey on AutoML. First, we introduce and define the AutoML problem, with inspiration from both realms of automation and machine learning. Then, we propose a general AutoML framework that not only covers most existing approaches to date but also can guide the design for new methods. Subsequently, we categorize and review the existing works from two aspects, i.e., the problem setup and the employed techniques. Finally, we provide a detailed analysis of AutoML approaches and explain the reasons underneath their successful applications. We hope this survey can serve as not only an insightful guideline for AutoML beginners but also an inspiration for future research.

北京阿比特科技有限公司