Malware authors often use cryptographic tools such as XOR encryption and block ciphers like AES to obfuscate part of the malware to evade detection. Use of cryptography may give the impression that these obfuscation techniques have some provable guarantees of success. In this paper, we take a closer look at the use of cryptographic tools to obfuscate malware. We first find that most techniques are easy to defeat (in principle), since the decryption algorithm and the key is shipped within the program. In order to clearly define an obfuscation technique's potential to evade detection we propose a principled definition of malware obfuscation, and then categorize instances of malware obfuscation that use cryptographic tools into those which evade detection and those which are detectable. We find that schemes that are hard to de-obfuscate necessarily rely on a construct based on environmental keying. We also show that cryptographic notions of obfuscation, e.g., indistinghuishability and virtual black box obfuscation, may not guarantee evasion detection under our model. However, they can be used in conjunction with environmental keying to produce hard to de-obfuscate version of programs.
We analyze the computational complexity of basic reconfiguration problems for the recently introduced surface Chemical Reaction Networks (sCRNs), where ordered pairs of adjacent species nondeterministically transform into a different ordered pair of species according to a predefined set of allowed transition rules (chemical reactions). In particular, two questions that are fundamental to the simulation of sCRNs are whether a given configuration of molecules can ever transform into another given configuration, and whether a given cell can ever contain a given species, given a set of transition rules. We show that these problems can be solved in polynomial time, are NP-complete, or are PSPACE-complete in a variety of different settings, including when adjacent species just swap instead of arbitrary transformation (swap sCRNs), and when cells can change species a limited number of times (k-burnout). Most problems turn out to be at least NP-hard except with very few distinct species (2 or 3).
In single-cloud storage, ciphertext-policy attribute-based encryption (CP-ABE) allows one to encrypt any data under an access structure to a cloud server, specifying what attributes are required to decrypt. In multi-cloud storage, a secret sharing scheme (SSS) allows one to split any data into multiple shares, one to a single server, and specify which subset of the servers are able to recover the data. It is an interesting problem to remove some attributes/servers but still enable the remaining attributes/servers in every authorized set to recover the data. The problem is related to the contraction problem of access structures for SSSs. In this paper, we propose a method that can efficiently transform a given SSS for an access structure to SSSs for contractions of the access structure. We show its applications in solving the attribute removal problem in the CP-ABE based single-cloud storage and the data relocating problem in multi-cloud storage. Our method results in solutions that require either less server storage or even no additional server storage.
Typical Convolutional Neural Networks (ConvNets) depend heavily on large amounts of image data and resort to an iterative optimization algorithm (e.g., SGD or Adam) to learn network parameters, which makes training very time- and resource-intensive. In this paper, we propose a new training paradigm and formulate the parameter learning of ConvNets into a prediction task: given a ConvNet architecture, we observe there exists correlations between image datasets and their corresponding optimal network parameters, and explore if we can learn a hyper-mapping between them to capture the relations, such that we can directly predict the parameters of the network for an image dataset never seen during the training phase. To do this, we put forward a new hypernetwork based model, called PudNet, which intends to learn a mapping between datasets and their corresponding network parameters, and then predicts parameters for unseen data with only a single forward propagation. Moreover, our model benefits from a series of adaptive hyper recurrent units sharing weights to capture the dependencies of parameters among different network layers. Extensive experiments demonstrate that our proposed method achieves good efficacy for unseen image datasets on two kinds of settings: Intra-dataset prediction and Inter-dataset prediction. Our PudNet can also well scale up to large-scale datasets, e.g., ImageNet-1K. It takes 8967 GPU seconds to train ResNet-18 on the ImageNet-1K using GC from scratch and obtain a top-5 accuracy of 44.65 %. However, our PudNet costs only 3.89 GPU seconds to predict the network parameters of ResNet-18 achieving comparable performance (44.92 %), more than 2,300 times faster than the traditional training paradigm.
The burgeoning capabilities of advanced large language models (LLMs) such as ChatGPT have led to an increase in synthetic content generation with implications across a variety of sectors, including media, cybersecurity, public discourse, and education. As such, the ability to detect LLMs-generated content has become of paramount importance. We aim to provide a detailed overview of existing detection strategies and benchmarks, scrutinizing their differences and identifying key challenges and prospects in the field, advocating for more adaptable and robust models to enhance detection accuracy. We also posit the necessity for a multi-faceted approach to defend against various attacks to counter the rapidly advancing capabilities of LLMs. To the best of our knowledge, this work is the first comprehensive survey on the detection in the era of LLMs. We hope it will provide a broad understanding of the current landscape of LLMs-generated content detection, offering a guiding reference for researchers and practitioners striving to uphold the integrity of digital information in an era increasingly dominated by synthetic content. The relevant papers are summarized and will be consistently updated at //github.com/Xianjun-Yang/Awesome_papers_on_LLMs_detection.git.
Modern NLP models are often trained over large untrusted datasets, raising the potential for a malicious adversary to compromise model behaviour. For instance, backdoors can be implanted through crafting training instances with a specific textual trigger and a target label. This paper posits that backdoor poisoning attacks exhibit \emph{spurious correlation} between simple text features and classification labels, and accordingly, proposes methods for mitigating spurious correlation as means of defence. Our empirical study reveals that the malicious triggers are highly correlated to their target labels; therefore such correlations are extremely distinguishable compared to those scores of benign features, and can be used to filter out potentially problematic instances. Compared with several existing defences, our defence method significantly reduces attack success rates across backdoor attacks, and in the case of insertion-based attacks, our method provides a near-perfect defence.
While recent large language models (LLMs) improve on various question answering (QA) datasets, it remains difficult for a single model to generalize across question types that require distinct reasoning abilities. We provide empirical evidence that state-of-the-art LLMs suffer from poor generalizability on reasoning types beyond those seen in the prompt. To remedy this, we propose a Mixture-of-Reasoning-Experts (MoRE) framework that ensembles diverse specialized language models. We specialize the backbone language model with prompts optimized for different reasoning categories, including factual, multihop, mathematical, and commonsense reasoning. Our key insight is to leverage agreement among the specialized experts to select the best answer for each question, or to abstain from answering. This gives MoRE higher accuracy than any single specialized model on a collection of 12 QA datasets from four reasoning types. Beyond generalizability, the interpretable design of MoRE improves selective question answering results compared to baselines without incorporating inter-expert agreement. This framework is also more interpretable and useful to human consumers of QA outputs. Our human study confirms that presenting expert predictions and the answer selection process helps annotators more accurately calibrate when to trust the system's output. We release all code and data to facilitate future work.
Manually grading D3 data visualizations is a challenging endeavor, and is especially difficult for large classes with hundreds of students. Grading an interactive visualization requires a combination of interactive, quantitative, and qualitative evaluation that are conventionally done manually and are difficult to scale up as the visualization complexity, data size, and number of students increase. We present VisGrader, a first-of-its kind automatic grading method for D3 visualizations that scalably and precisely evaluates the data bindings, visual encodings, interactions, and design specifications used in a visualization. Our method enhances students learning experience, enabling them to submit their code frequently and receive rapid feedback to better inform iteration and improvement to their code and visualization design. We have successfully deployed our method and auto-graded D3 submissions from more than 4000 students in a visualization course at Georgia Tech, and received positive feedback for expanding its adoption.
What is learned by sophisticated neural network agents such as AlphaZero? This question is of both scientific and practical interest. If the representations of strong neural networks bear no resemblance to human concepts, our ability to understand faithful explanations of their decisions will be restricted, ultimately limiting what we can achieve with neural network interpretability. In this work we provide evidence that human knowledge is acquired by the AlphaZero neural network as it trains on the game of chess. By probing for a broad range of human chess concepts we show when and where these concepts are represented in the AlphaZero network. We also provide a behavioural analysis focusing on opening play, including qualitative analysis from chess Grandmaster Vladimir Kramnik. Finally, we carry out a preliminary investigation looking at the low-level details of AlphaZero's representations, and make the resulting behavioural and representational analyses available online.
We consider the problem of discovering $K$ related Gaussian directed acyclic graphs (DAGs), where the involved graph structures share a consistent causal order and sparse unions of supports. Under the multi-task learning setting, we propose a $l_1/l_2$-regularized maximum likelihood estimator (MLE) for learning $K$ linear structural equation models. We theoretically show that the joint estimator, by leveraging data across related tasks, can achieve a better sample complexity for recovering the causal order (or topological order) than separate estimations. Moreover, the joint estimator is able to recover non-identifiable DAGs, by estimating them together with some identifiable DAGs. Lastly, our analysis also shows the consistency of union support recovery of the structures. To allow practical implementation, we design a continuous optimization problem whose optimizer is the same as the joint estimator and can be approximated efficiently by an iterative algorithm. We validate the theoretical analysis and the effectiveness of the joint estimator in experiments.
Recent developments in image classification and natural language processing, coupled with the rapid growth in social media usage, have enabled fundamental advances in detecting breaking events around the world in real-time. Emergency response is one such area that stands to gain from these advances. By processing billions of texts and images a minute, events can be automatically detected to enable emergency response workers to better assess rapidly evolving situations and deploy resources accordingly. To date, most event detection techniques in this area have focused on image-only or text-only approaches, limiting detection performance and impacting the quality of information delivered to crisis response teams. In this paper, we present a new multimodal fusion method that leverages both images and texts as input. In particular, we introduce a cross-attention module that can filter uninformative and misleading components from weak modalities on a sample by sample basis. In addition, we employ a multimodal graph-based approach to stochastically transition between embeddings of different multimodal pairs during training to better regularize the learning process as well as dealing with limited training data by constructing new matched pairs from different samples. We show that our method outperforms the unimodal approaches and strong multimodal baselines by a large margin on three crisis-related tasks.