亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Euclidean Steiner Minimal Tree problem takes as input a set $\mathcal P$ of points in the Euclidean plane and finds the minimum length network interconnecting all the points of $\mathcal P$. In this paper, in continuation to the works of Du et al. and Weng et al., we study Euclidean Steiner Minimal Tree when $\mathcal P$ is formed by the vertices of a pair of regular, concentric and parallel $n$-gons. We restrict our attention to the cases where the two polygons are not very close to each other. In such cases, we show that Euclidean Steiner Minimal Tree is polynomial-time solvable, and we describe an explicit structure of a Euclidean Steiner minimal tree for $\mathcal P$. We also consider point sets $\mathcal P$ of size $n$ where the number of input points not on the convex hull of $\mathcal P$ is $f(n) \leq n$. We give an exact algorithm with running time $2^{\mathcal{O}(f(n)\log n)}$ for such input point sets $\mathcal P$. Note that when $f(n) = \mathcal{O}(\frac{n}{\log n})$, our algorithm runs in single-exponential time, and when $f(n) = o(n)$ the running time is $2^{o(n\log n)}$ which is better than the known algorithm stated in Hwang et al. We know that no FPTAS exists for Euclidean Steiner Minimal Tree unless P=NP, as shown by Garey et al. On the other hand FPTASes exist for Euclidean Steiner Minimal Tree on convex point sets, as given by Scott Provan. In this paper, we show that if the number of input points in $\mathcal P$ not belonging to the convex hull of $\mathcal P$ is $\mathcal{O}(\log n)$, then an FPTAS exists for Euclidean Steiner Minimal Tree. In contrast, we show that for any $\epsilon \in (0,1]$, when there are $\Omega(n^{\epsilon})$ points not belonging to the convex hull of the input set, then no FPTAS can exist for Euclidean Steiner Minimal Tree unless P=NP.

相關內容

CASES:International Conference on Compilers, Architectures, and Synthesis for Embedded Systems。 Explanation:嵌入式系統編譯器、體系結構和綜合國際會議。 Publisher:ACM。 SIT:

The combination of Terahertz (THz) and massive multiple-input multiple-output (MIMO) is promising to meet the increasing data rate demand of future wireless communication systems thanks to the huge bandwidth and spatial degrees of freedom. However, unique channel features such as the near-field beam split effect make channel estimation particularly challenging in THz massive MIMO systems. On one hand, adopting the conventional angular domain transformation dictionary designed for low-frequency far-field channels will result in degraded channel sparsity and destroyed sparsity structure in the transformed domain. On the other hand, most existing compressive sensing-based channel estimation algorithms cannot achieve high performance and low complexity simultaneously. To alleviate these issues, in this paper, we first adopt frequency-dependent near-field dictionaries to maintain good channel sparsity and sparsity structure in the transformed domain under the near-field beam split effect. Then, a deep unfolding-based wideband THz massive MIMO channel estimation algorithm is proposed. In each iteration of the unitary approximate message passing-sparse Bayesian learning algorithm, the optimal update rule is learned by a deep neural network (DNN), whose structure is customized to effectively exploit the inherent channel patterns. Furthermore, a mixed training method based on novel designs of the DNN structure and the loss function is developed to effectively train data from different system configurations. Simulation results validate the superiority of the proposed algorithm in terms of performance, complexity, and robustness.

We study the partial search order problem (PSOP) proposed recently by Scheffler [WG 2022]. Given a graph $G$ together with a partial order over the set of vertices of $G$, this problem determines if there is an $\mathcal{S}$-ordering that is consistent with the given partial order, where $\mathcal{S}$ is a graph search paradigm like BFS, DFS, etc. This problem naturally generalizes the end-vertex problem which has received much attention over the past few years. It also generalizes the so-called ${\mathcal{F}}$-tree recognition problem which has just been studied in the literature recently. Our main contribution is a polynomial-time dynamic programming algorithm for the PSOP of the maximum cardinality search (MCS) restricted to chordal graphs. This resolves one of the most intriguing open questions left in the work of Scheffler [WG 2022]. To obtain our result, we propose the notion of layer structure and study numerous related structural properties which might be of independent interest.

Shannon proved that almost all Boolean functions require a circuit of size $\Theta(2^n/n)$. We prove a quantum analog of this classical result. Unlike in the classical case the number of quantum circuits of any fixed size that we allow is uncountably infinite. Our main tool is a classical result in real algebraic geometry bounding the number of realizable sign conditions of any finite set of real polynomials in many variables.

Given a closed simple polygon $P$, we say two points $p,q$ see each other if the segment $pq$ is fully contained in $P$. The art gallery problem seeks a minimum size set $G\subset P$ of guards that sees $P$ completely. The only currently correct algorithm to solve the art gallery problem exactly uses algebraic methods and is attributed to Sharir. As the art gallery problem is ER-complete, it seems unlikely to avoid algebraic methods, without additional assumptions. In this paper, we introduce the notion of vision stability. In order to describe vision stability consider an enhanced guard that can see "around the corner" by an angle of $\delta$ or a diminished guard whose vision is by an angle of $\delta$ "blocked" by reflex vertices. A polygon $P$ has vision stability $\delta$ if the optimal number of enhanced guards to guard $P$ is the same as the optimal number of diminished guards to guard $P$. We will argue that most relevant polygons are vision stable. We describe a one-shot vision stable algorithm that computes an optimal guard set for visionstable polygons using polynomial time and solving one integer program. It guarantees to find the optimal solution for every vision stable polygon. We implemented an iterative visionstable algorithm and show its practical performance is slower, but comparable with other state of the art algorithms. Our iterative algorithm is inspired and follows closely the one-shot algorithm. It delays several steps and only computes them when deemed necessary. Given a chord $c$ of a polygon, we denote by $n(c)$ the number of vertices visible from $c$. The chord-width of a polygon is the maximum $n(c)$ over all possible chords $c$. The set of vision stable polygons admits an FPT algorithm when parametrized by the chord-width. Furthermore, the one-shot algorithm runs in FPT time, when parameterized by the number of reflex vertices.

We consider the Shortest Odd Path problem, where given an undirected graph $G$, a weight function on its edges, and two vertices $s$ and $t$ in $G$, the aim is to find an $(s,t)$-path with odd length and, among all such paths, of minimum weight. For the case when the weight function is conservative, i.e., when every cycle has non-negative total weight, the complexity of the Shortest Odd Path problem had been open for 20 years, and was recently shown to be NP-hard. We give a polynomial-time algorithm for the special case when the weight function is conservative and the set $E^-$ of negative-weight edges forms a single tree. Our algorithm exploits the strong connection between Shortest Odd Path and the problem of finding two internally vertex-disjoint paths between two terminals in an undirected edge-weighted graph. It also relies on solving an intermediary problem variant called Shortest Parity-Constrained Odd Path where for certain edges we have parity constraints on their position along the path. Also, we exhibit two FPT algorithms for solving Shortest Odd Path in graphs with conservative weight functions. The first FPT algorithm is parameterized by $|E^-|$, the number of negative edges, or more generally, by the maximum size of a matching in the subgraph of $G$ spanned by $E^-$. Our second FPT algorithm is parameterized by the treewidth of $G$.

Out-of-distribution (OOD) detection refers to training the model on an in-distribution (ID) dataset to classify whether the input images come from unknown classes. Considerable effort has been invested in designing various OOD detection methods based on either convolutional neural networks or transformers. However, zero-shot OOD detection methods driven by CLIP, which only require class names for ID, have received less attention. This paper presents a novel method, namely CLIP saying "no" (\textbf{CLIPN}), which empowers the logic of saying "no" within CLIP. Our key motivation is to equip CLIP with the capability of distinguishing OOD and ID samples using positive-semantic prompts and negation-semantic prompts. Specifically, we design a novel learnable "no" prompt and a "no" text encoder to capture negation semantics within images. Subsequently, we introduce two loss functions: the image-text binary-opposite loss and the text semantic-opposite loss, which we use to teach CLIPN to associate images with "no" prompts, thereby enabling it to identify unknown samples. Furthermore, we propose two threshold-free inference algorithms to perform OOD detection by utilizing negation semantics from "no" prompts and the text encoder. Experimental results on 9 benchmark datasets (3 ID datasets and 6 OOD datasets) for the OOD detection task demonstrate that CLIPN, based on ViT-B-16, outperforms 7 well-used algorithms by at least 2.34\% and 11.64\% in terms of AUROC and FPR95 for zero-shot OOD detection on ImageNet-1K. Our CLIPN can serve as a solid foundation for effectively leveraging CLIP in downstream OOD tasks. The code is available on //github.com/xmed-lab/CLIPN}{//github.com/xmed-lab/CLIPN.

Chain-of-Though (CoT) prompting has shown promising performance in various reasoning tasks. Recently, Self-Consistency \citep{wang2023selfconsistency} proposes to sample a diverse set of reasoning chains which may lead to different answers while the answer that receives the most votes is selected. In this paper, we propose a novel method to use backward reasoning in verifying candidate answers. We mask a token in the question by ${\bf x}$ and ask the LLM to predict the masked token when a candidate answer is provided by \textit{a simple template}, i.e., "\textit{\textbf{If we know the answer of the above question is \{a candidate answer\}, what is the value of unknown variable ${\bf x}$?}}" Intuitively, the LLM is expected to predict the masked token successfully if the provided candidate answer is correct. We further propose FOBAR to combine forward and backward reasoning for estimating the probability of candidate answers. We conduct extensive experiments on six data sets and three LLMs. Experimental results demonstrate that FOBAR achieves state-of-the-art performance on various reasoning benchmarks.

The $k$-dimensional Weisfeiler-Leman ($k$-WL) algorithm is a simple combinatorial algorithm that was originally designed as a graph isomorphism heuristic. It naturally finds applications in Babai's quasipolynomial time isomorphism algorithm, practical isomorphism solvers, and algebraic graph theory. However, it also has surprising connections to other areas such as logic, proof complexity, combinatorial optimization, and machine learning. The algorithm iteratively computes a coloring of the $k$-tuples of vertices of a graph. Since F\"urer's linear lower bound [ICALP 2001], it has been an open question whether there is a super-linear lower bound for the iteration number for $k$-WL on graphs. We answer this question affirmatively, establishing an $\Omega(n^{k/2})$-lower bound for all $k$.

The Ramsey number is the minimum number of nodes, $n = R(s, t)$, such that all undirected simple graphs of order $n$, contain a clique of order $s$, or an independent set of order $t$. This paper explores the application of a best first search algorithm and reinforcement learning (RL) techniques to find counterexamples to specific Ramsey numbers. We incrementally improve over prior search methods such as random search by introducing a graph vectorization and deep neural network (DNN)-based heuristic, which gauge the likelihood of a graph being a counterexample. The paper also proposes algorithmic optimizations to confine a polynomial search runtime. This paper does not aim to present new counterexamples but rather introduces and evaluates a framework supporting Ramsey counterexample exploration using other heuristics. Code and methods are made available through a PyPI package and GitHub repository.

Multiple TSP ($\mathrm{mTSP}$) is a important variant of $\mathrm{TSP}$ where a set of $k$ salesperson together visit a set of $n$ cities. The $\mathrm{mTSP}$ problem has applications to many real life applications such as vehicle routing. Rothkopf introduced another variant of $\mathrm{TSP}$ called many-visits TSP ($\mathrm{MV\mbox{-}TSP}$) where a request $r(v)\in \mathbb{Z}_+$ is given for each city $v$ and a single salesperson needs to visit each city $r(v)$ times and return back to his starting point. A combination of $\mathrm{mTSP}$ and $\mathrm{MV\mbox{-}TSP}$ called many-visits multiple TSP $(\mathrm{MV\mbox{-}mTSP})$ was studied by B\'erczi, Mnich, and Vincze where the authors give approximation algorithms for various variants of $\mathrm{MV\mbox{-}mTSP}$. In this work, we show a simple linear programming (LP) based reduction that converts a $\mathrm{mTSP}$ LP-based algorithm to a LP-based algorithm for $\mathrm{MV\mbox{-}mTSP}$ with the same approximation factor. We apply this reduction to improve or match the current best approximation factors of several variants of the $\mathrm{MV\mbox{-}mTSP}$. Our reduction shows that the addition of visit requests $r(v)$ to $\mathrm{mTSP}$ does $\textit{not}$ make the problem harder to approximate even when $r(v)$ is exponential in number of vertices. To apply our reduction, we either use existing LP-based algorithms for $\mathrm{mTSP}$ variants or show that several existing combinatorial algorithms for $\mathrm{mTSP}$ variants can be interpreted as LP-based algorithms. This allows us to apply our reduction to these combinatorial algorithms as well achieving the improved guarantees.

北京阿比特科技有限公司