Large language models have catalyzed an unprecedented wave in code generation. While achieving significant advances, they blur the distinctions between machine- and human-authored source code, causing integrity and authenticity issues of software artifacts. Previous methods such as DetectGPT have proven effective in discerning machine-generated texts, but they do not identify and harness the unique patterns of machine-generated code. Thus, its applicability falters when applied to code. In this paper, we carefully study the specific patterns that characterize machine- and human-authored code. Through a rigorous analysis of code attributes such as lexical diversity, conciseness, and naturalness, we expose unique patterns inherent to each source. We particularly notice that the syntactic segmentation of code is a critical factor in identifying its provenance. Based on our findings, we propose DetectCodeGPT, a novel method for detecting machine-generated code, which improves DetectGPT by capturing the distinct stylized patterns of code. Diverging from conventional techniques that depend on external LLMs for perturbations, DetectCodeGPT perturbs the code corpus by strategically inserting spaces and newlines, ensuring both efficacy and efficiency. Experiment results show that our approach significantly outperforms state-of-the-art techniques in detecting machine-generated code.
Foundation models have enormous potential in advancing Earth and climate sciences, however, current approaches may not be optimal as they focus on a few basic features of a desirable Earth and climate foundation model. Crafting the ideal Earth foundation model, we define eleven features which would allow such a foundation model to be beneficial for any geoscientific downstream application in an environmental- and human-centric manner.We further shed light on the way forward to achieve the ideal model and to evaluate Earth foundation models. What comes after foundation models? Energy efficient adaptation, adversarial defenses, and interpretability are among the emerging directions.
Recommendation systems are widespread, and through customized recommendations, promise to match users with options they will like. To that end, data on engagement is collected and used. Most recommendation systems are ranking-based, where they rank and recommend items based on their predicted engagement. However, the engagement signals are often only a crude proxy for utility, as data on the latter is rarely collected or available. This paper explores the following question: By optimizing for measurable proxies, are recommendation systems at risk of significantly under-delivering on utility? If so, how can one improve utility which is seldom measured? To study these questions, we introduce a model of repeated user consumption in which, at each interaction, users select between an outside option and the best option from a recommendation set. Our model accounts for user heterogeneity, with the majority preferring ``popular'' content, and a minority favoring ``niche'' content. The system initially lacks knowledge of individual user preferences but can learn them through observations of users' choices over time. Our theoretical and numerical analysis demonstrate that optimizing for engagement can lead to significant utility losses. Instead, we propose a utility-aware policy that initially recommends a mix of popular and niche content. As the platform becomes more forward-looking, our utility-aware policy achieves the best of both worlds: near-optimal utility and near-optimal engagement simultaneously. Our study elucidates an important feature of recommendation systems; given the ability to suggest multiple items, one can perform significant exploration without incurring significant reductions in engagement. By recommending high-risk, high-reward items alongside popular items, systems can enhance discovery of high utility items without significantly affecting engagement.
Video anomaly understanding (VAU) aims to automatically comprehend unusual occurrences in videos, thereby enabling various applications such as traffic surveillance and industrial manufacturing. While existing VAU benchmarks primarily concentrate on anomaly detection and localization, our focus is on more practicality, prompting us to raise the following crucial questions: "what anomaly occurred?", "why did it happen?", and "how severe is this abnormal event?". In pursuit of these answers, we present a comprehensive benchmark for Causation Understanding of Video Anomaly (CUVA). Specifically, each instance of the proposed benchmark involves three sets of human annotations to indicate the "what", "why" and "how" of an anomaly, including 1) anomaly type, start and end times, and event descriptions, 2) natural language explanations for the cause of an anomaly, and 3) free text reflecting the effect of the abnormality. In addition, we also introduce MMEval, a novel evaluation metric designed to better align with human preferences for CUVA, facilitating the measurement of existing LLMs in comprehending the underlying cause and corresponding effect of video anomalies. Finally, we propose a novel prompt-based method that can serve as a baseline approach for the challenging CUVA. We conduct extensive experiments to show the superiority of our evaluation metric and the prompt-based approach. Our code and dataset are available at //github.com/fesvhtr/CUVA.
Autonomous Vehicles (AVs) are prone to revolutionise the transportation industry. However, they must be thoroughly tested to avoid safety violations. Simulation testing plays a crucial role in finding safety violations of Automated Driving Systems (ADSs). This paper proposes PAFOT, a position-based approach testing framework, which generates adversarial driving scenarios to expose safety violations of ADSs. We introduce a 9-position grid which is virtually drawn around the Ego Vehicle (EV) and modify the driving behaviours of Non-Playable Characters (NPCs) to move within this grid. PAFOT utilises a single-objective genetic algorithm to search for adversarial test scenarios. We demonstrate PAFOT on a well-known high-fidelity simulator, CARLA. The experimental results show that PAFOT can effectively generate safety-critical scenarios to crash ADSs and is able to find collisions in a short simulation time. Furthermore, it outperforms other search-based testing techniques by finding more safety-critical scenarios under the same driving conditions within less effective simulation time.
Large Language Models (LLMs) have achieved significant success in various natural language processing tasks, but how wireless communications can support LLMs has not been extensively studied. In this paper, we propose a wireless distributed LLMs paradigm based on Mixture of Experts (MoE), named WDMoE, deploying LLMs collaboratively across edge servers of base station (BS) and mobile devices in the wireless communications system. Specifically, we decompose the MoE layer in LLMs by deploying the gating network and the preceding neural network layer at BS, while distributing the expert networks across the devices. This arrangement leverages the parallel capabilities of expert networks on distributed devices. Moreover, to overcome the instability of wireless communications, we design an expert selection policy by taking into account both the performance of the model and the end-to-end latency, which includes both transmission delay and inference delay. Evaluations conducted across various LLMs and multiple datasets demonstrate that WDMoE not only outperforms existing models, such as Llama 2 with 70 billion parameters, but also significantly reduces end-to-end latency.
Large Language Models (LLMs) have demonstrated significant success across various domains. However, their application in complex decision-making tasks frequently necessitates intricate prompt engineering or fine-tuning, leading to challenges in unseen downstream tasks and heavy demands on computational resources. Meanwhile, Reinforcement Learning (RL) has been recognized as effective in decision-making problems but struggles in environments with sparse rewards, such as open-world games. To overcome these challenges, we introduce AdaRefiner, a novel framework designed to enhance the synergy between LLMs and RL feedback. The key component of AdaRefiner is a lightweight Adapter Language Model (LM), which automatically refines task comprehension based on feedback from RL agents. This method mitigates the need for intricate prompt engineering and intensive LLM fine-tuning while maintaining the LLMs' generalization abilities and enhancing their decision-making capabilities in downstream tasks. Empirical evaluations of AdaRefiner on 22 diverse tasks within the open-world game Crafter have demonstrated its superior effectiveness, especially in guiding agents towards higher-level and common-sense skills. Our work makes contributions to the automatic self-refinement of LLMs with RL feedback, offering a more adaptable and efficient solution for complex decision-making problems.
Tokenisation is a core part of language models (LMs). It involves splitting a character sequence into subwords which are assigned arbitrary indices before being served to the LM. While typically lossless, however, this process may lead to less sample efficient LM training: as it removes character-level information, it could make it harder for LMs to generalise across similar subwords, such as now and Now. We refer to such subwords as near duplicates. In this paper, we study the impact of near duplicate subwords on LM training efficiency. First, we design an experiment that gives us an upper bound to how much we should expect a model to improve if we could perfectly generalise across near duplicates. We do this by duplicating each subword in our LM's vocabulary, creating perfectly equivalent classes of subwords. Experimentally, we find that LMs need roughly 17% more data when trained in a fully duplicated setting. Second, we investigate the impact of naturally occurring near duplicates on LMs. Here, we see that merging them considerably hurts LM performance. Therefore, although subword duplication negatively impacts LM training efficiency, naturally occurring near duplicates may not be as similar as anticipated, limiting the potential for performance improvements.
Unmanned Aerial Vehicles (UAVs) have emerged as a transformative technology across diverse sectors, offering adaptable solutions to complex challenges in both military and civilian domains. Their expanding capabilities present a platform for further advancement by integrating cutting-edge computational tools like Artificial Intelligence (AI) and Machine Learning (ML) algorithms. These advancements have significantly impacted various facets of human life, fostering an era of unparalleled efficiency and convenience. Large Language Models (LLMs), a key component of AI, exhibit remarkable learning and adaptation capabilities within deployed environments, demonstrating an evolving form of intelligence with the potential to approach human-level proficiency. This work explores the significant potential of integrating UAVs and LLMs to propel the development of autonomous systems. We comprehensively review LLM architectures, evaluating their suitability for UAV integration. Additionally, we summarize the state-of-the-art LLM-based UAV architectures and identify novel opportunities for LLM embedding within UAV frameworks. Notably, we focus on leveraging LLMs to refine data analysis and decision-making processes, specifically for enhanced spectral sensing and sharing in UAV applications. Furthermore, we investigate how LLM integration expands the scope of existing UAV applications, enabling autonomous data processing, improved decision-making, and faster response times in emergency scenarios like disaster response and network restoration. Finally, we highlight crucial areas for future research that are critical for facilitating the effective integration of LLMs and UAVs.
Big models have achieved revolutionary breakthroughs in the field of AI, but they might also pose potential concerns. Addressing such concerns, alignment technologies were introduced to make these models conform to human preferences and values. Despite considerable advancements in the past year, various challenges lie in establishing the optimal alignment strategy, such as data cost and scalable oversight, and how to align remains an open question. In this survey paper, we comprehensively investigate value alignment approaches. We first unpack the historical context of alignment tracing back to the 1920s (where it comes from), then delve into the mathematical essence of alignment (what it is), shedding light on the inherent challenges. Following this foundation, we provide a detailed examination of existing alignment methods, which fall into three categories: Reinforcement Learning, Supervised Fine-Tuning, and In-context Learning, and demonstrate their intrinsic connections, strengths, and limitations, helping readers better understand this research area. In addition, two emerging topics, personal alignment, and multimodal alignment, are also discussed as novel frontiers in this field. Looking forward, we discuss potential alignment paradigms and how they could handle remaining challenges, prospecting where future alignment will go.
The advent of large language models marks a revolutionary breakthrough in artificial intelligence. With the unprecedented scale of training and model parameters, the capability of large language models has been dramatically improved, leading to human-like performances in understanding, language synthesizing, and common-sense reasoning, etc. Such a major leap-forward in general AI capacity will change the pattern of how personalization is conducted. For one thing, it will reform the way of interaction between humans and personalization systems. Instead of being a passive medium of information filtering, large language models present the foundation for active user engagement. On top of such a new foundation, user requests can be proactively explored, and user's required information can be delivered in a natural and explainable way. For another thing, it will also considerably expand the scope of personalization, making it grow from the sole function of collecting personalized information to the compound function of providing personalized services. By leveraging large language models as general-purpose interface, the personalization systems may compile user requests into plans, calls the functions of external tools to execute the plans, and integrate the tools' outputs to complete the end-to-end personalization tasks. Today, large language models are still being developed, whereas the application in personalization is largely unexplored. Therefore, we consider it to be the right time to review the challenges in personalization and the opportunities to address them with LLMs. In particular, we dedicate this perspective paper to the discussion of the following aspects: the development and challenges for the existing personalization system, the newly emerged capabilities of large language models, and the potential ways of making use of large language models for personalization.