This research introduces an enhanced version of the multi-objective speech assessment model, called MOSA-Net+, by leveraging the acoustic features from large pre-trained weakly supervised models, namely Whisper, to create embedding features. The first part of this study investigates the correlation between the embedding features of Whisper and two self-supervised learning (SSL) models with subjective quality and intelligibility scores. The second part evaluates the effectiveness of Whisper in deploying a more robust speech assessment model. Third, the possibility of combining representations from Whisper and SSL models while deploying MOSA-Net+ is analyzed. The experimental results reveal that Whisper's embedding features correlate more strongly with subjective quality and intelligibility than other SSL's embedding features, contributing to more accurate prediction performance achieved by MOSA-Net+. Moreover, combining the embedding features from Whisper and SSL models only leads to marginal improvement. As compared to MOSA-Net and other SSL-based speech assessment models, MOSA-Net+ yields notable improvements in estimating subjective quality and intelligibility scores across all evaluation metrics. We further tested MOSA-Net+ on Track 3 of the VoiceMOS Challenge 2023 and obtained the top-ranked performance.
Nowadays, many modern applications require heterogeneous tabular data, which is still a challenging task in terms of regression and classification. Many approaches have been proposed to adapt neural networks for this task, but still, boosting and bagging of decision trees are the best-performing methods for this task. In this paper, we show that a binomial initialized neural network can be used effectively on tabular data. The proposed approach shows a simple but effective approach for initializing the first hidden layer in neural networks. We also show that this initializing schema can be used to jointly train ensembles by adding gradient masking to batch entries and using the binomial initialization for the last layer in a neural network. For this purpose, we modified the hinge binary loss and the soft max loss to make them applicable for joint ensemble training. We evaluate our approach on multiple public datasets and showcase the improved performance compared to other neural network-based approaches. In addition, we discuss the limitations and possible further research of our approach for improving the applicability of neural networks to tabular data. Link: //es-cloud.cs.uni-tuebingen.de/d/8e2ab8c3fdd444e1a135/?p=%2FInitializationNeuronalNetworksTabularData&mode=list
Contemporary large-scale visual language models (VLMs) exhibit strong representation capacities, making them ubiquitous for enhancing image and text understanding tasks. They are often trained in a contrastive manner on a large and diverse corpus of images and corresponding text captions scraped from the internet. Despite this, VLMs often struggle with compositional reasoning tasks which require a fine-grained understanding of the complex interactions of objects and their attributes. This failure can be attributed to two main factors: 1) Contrastive approaches have traditionally focused on mining negative examples from existing datasets. However, the mined negative examples might not be difficult for the model to discriminate from the positive. An alternative to mining would be negative sample generation 2) But existing generative approaches primarily focus on generating hard negative texts associated with a given image. Mining in the other direction, i.e., generating negative image samples associated with a given text has been ignored. To overcome both these limitations, we propose a framework that not only mines in both directions but also generates challenging negative samples in both modalities, i.e., images and texts. Leveraging these generative hard negative samples, we significantly enhance VLMs' performance in tasks involving multimodal compositional reasoning. Our code and dataset are released at //ugorsahin.github.io/enhancing-multimodal-compositional-reasoning-of-vlm.html.
Pre-trained Generative models such as BART, T5, etc. have gained prominence as a preferred method for text generation in various natural language processing tasks, including abstractive long-form question answering (QA) and summarization. However, the potential of generative models in extractive QA tasks, where discriminative models are commonly employed, remains largely unexplored. Discriminative models often encounter challenges associated with label sparsity, particularly when only a small portion of the context contains the answer. The challenge is more pronounced for multi-span answers. In this work, we introduce a novel approach that uses the power of pre-trained generative models to address extractive QA tasks by generating indexes corresponding to context tokens or sentences that form part of the answer. Through comprehensive evaluations on multiple extractive QA datasets, including MultiSpanQA, BioASQ, MASHQA, and WikiQA, we demonstrate the superior performance of our proposed approach compared to existing state-of-the-art models.
We develop a new class of spatial voting models for binary preference data that can accommodate both monotonic and non-monotonic response functions, and are more flexible than alternative "unfolding" models previously introduced in the literature. We then use these models to estimate revealed preferences for legislators in the U.S. House of Representatives and justices on the U.S. Supreme Court. The results from these applications indicate that the new models provide superior complexity-adjusted performance to various alternatives and also that the additional flexibility leads to preferences' estimates that are closer matches to the perceived ideological positions of legislators and justices.
We report on COOL-MC, a model checking tool for fixpoint logics that is parametric in the branching type of models (nondeterministic, game-based, probabilistic etc.) and in the next-step modalities used in formulae. The tool implements generic model checking algorithms developed in coalgebraic logic that are easily adapted to concrete instance logics. Apart from the standard modal $\mu$-calculus, COOL-MC currently supports alternating-time, graded, probabilistic and monotone variants of the $\mu$-calculus, but is also effortlessly extensible with new instance logics. The model checking process is realized by polynomial reductions to parity game solving, or, alternatively, by a local model checking algorithm that directly computes the extensions of formulae in a lazy fashion, thereby potentially avoiding the construction of the full parity game. We evaluate COOL-MC on informative benchmark sets.
Model-based evaluation metrics (e.g., CLIPScore and GPTScore) have demonstrated decent correlations with human judgments in various language generation tasks. However, their impact on fairness remains largely unexplored. It is widely recognized that pretrained models can inadvertently encode societal biases, thus employing these models for evaluation purposes may inadvertently perpetuate and amplify biases. For example, an evaluation metric may favor the caption "a woman is calculating an account book" over "a man is calculating an account book," even if the image only shows male accountants. In this paper, we conduct a systematic study of gender biases in model-based automatic evaluation metrics for image captioning tasks. We start by curating a dataset comprising profession, activity, and object concepts associated with stereotypical gender associations. Then, we demonstrate the negative consequences of using these biased metrics, including the inability to differentiate between biased and unbiased generations, as well as the propagation of biases to generation models through reinforcement learning. Finally, we present a simple and effective way to mitigate the metric bias without hurting the correlations with human judgments. Our dataset and framework lay the foundation for understanding the potential harm of model-based evaluation metrics, and facilitate future works to develop more inclusive evaluation metrics.
Generative models, as an important family of statistical modeling, target learning the observed data distribution via generating new instances. Along with the rise of neural networks, deep generative models, such as variational autoencoders (VAEs) and generative adversarial network (GANs), have made tremendous progress in 2D image synthesis. Recently, researchers switch their attentions from the 2D space to the 3D space considering that 3D data better aligns with our physical world and hence enjoys great potential in practice. However, unlike a 2D image, which owns an efficient representation (i.e., pixel grid) by nature, representing 3D data could face far more challenges. Concretely, we would expect an ideal 3D representation to be capable enough to model shapes and appearances in details, and to be highly efficient so as to model high-resolution data with fast speed and low memory cost. However, existing 3D representations, such as point clouds, meshes, and recent neural fields, usually fail to meet the above requirements simultaneously. In this survey, we make a thorough review of the development of 3D generation, including 3D shape generation and 3D-aware image synthesis, from the perspectives of both algorithms and more importantly representations. We hope that our discussion could help the community track the evolution of this field and further spark some innovative ideas to advance this challenging task.
Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).
Named entity recognition (NER) is the task to identify text spans that mention named entities, and to classify them into predefined categories such as person, location, organization etc. NER serves as the basis for a variety of natural language applications such as question answering, text summarization, and machine translation. Although early NER systems are successful in producing decent recognition accuracy, they often require much human effort in carefully designing rules or features. In recent years, deep learning, empowered by continuous real-valued vector representations and semantic composition through nonlinear processing, has been employed in NER systems, yielding stat-of-the-art performance. In this paper, we provide a comprehensive review on existing deep learning techniques for NER. We first introduce NER resources, including tagged NER corpora and off-the-shelf NER tools. Then, we systematically categorize existing works based on a taxonomy along three axes: distributed representations for input, context encoder, and tag decoder. Next, we survey the most representative methods for recent applied techniques of deep learning in new NER problem settings and applications. Finally, we present readers with the challenges faced by NER systems and outline future directions in this area.
We propose a new method for event extraction (EE) task based on an imitation learning framework, specifically, inverse reinforcement learning (IRL) via generative adversarial network (GAN). The GAN estimates proper rewards according to the difference between the actions committed by the expert (or ground truth) and the agent among complicated states in the environment. EE task benefits from these dynamic rewards because instances and labels yield to various extents of difficulty and the gains are expected to be diverse -- e.g., an ambiguous but correctly detected trigger or argument should receive high gains -- while the traditional RL models usually neglect such differences and pay equal attention on all instances. Moreover, our experiments also demonstrate that the proposed framework outperforms state-of-the-art methods, without explicit feature engineering.