亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we propose a framework for early-stage malware detection and mitigation by leveraging natural language processing (NLP) techniques and machine learning algorithms. Our primary contribution is presenting an approach for predicting the upcoming actions of malware by treating application programming interface (API) call sequences as natural language inputs and employing text classification methods, specifically a Bi-LSTM neural network, to predict the next API call. This enables proactive threat identification and mitigation, demonstrating the effectiveness of applying NLP principles to API call sequences. The Bi-LSTM model is evaluated using two datasets. %The model achieved an accuracy of 93.6\% and 88.8\% for the %first and second dataset respectively. Additionally, by modeling consecutive API calls as 2-gram and 3-gram strings, we extract new features to be further processed using a Bagging-XGBoost algorithm, effectively predicting malware presence at its early stages. The accuracy of the proposed framework is evaluated by simulations.

相關內容

 應用程序接口(簡稱 API),又稱為應用編程接口,就是軟件系統不同組成部分銜接的約定。

This paper discusses our approaches for task-oriented conversational modelling using subjective knowledge, with a particular emphasis on response generation. Our methodology was shaped by an extensive data analysis that evaluated key factors such as response length, sentiment, and dialogue acts present in the provided dataset. We used few-shot learning to augment the data with newly generated subjective knowledge items and present three approaches for DSTC11: (1) task-specific model exploration, (2) incorporation of the most frequent question into all generated responses, and (3) a waterfall prompting technique using a combination of both GPT-3 and ChatGPT.

In this work, we propose a simple method that applies a large language model (LLM) to large-scale retrieval in zero-shot scenarios. Our method, the Language language model as Retriever (LameR), is built upon no other neural models but an LLM, while breaking brute-force combinations of retrievers with LLMs and lifting the performance of zero-shot retrieval to be very competitive on benchmark datasets. Essentially, we propose to augment a query with its potential answers by prompting LLMs with a composition of the query and the query's in-domain candidates. The candidates, regardless of correct or wrong, are obtained by a vanilla retrieval procedure on the target collection. As a part of the prompts, they are likely to help LLM generate more precise answers by pattern imitation or candidate summarization. Even if all the candidates are wrong, the prompts at least make LLM aware of in-collection patterns and genres. Moreover, due to the low performance of a self-supervised retriever, the LLM-based query augmentation becomes less effective as the retriever bottlenecks the whole pipeline. Therefore, we propose to leverage a non-parametric lexicon-based method (e.g., BM25) as the retrieval module to capture query-document overlap in a literal fashion. As such, LameR makes the retrieval procedure transparent to the LLM, thus circumventing the performance bottleneck.

Many methods to explain black-box models, whether local or global, are additive. In this paper, we study global additive explanations for non-additive models, focusing on four explanation methods: partial dependence, Shapley explanations adapted to a global setting, distilled additive explanations, and gradient-based explanations. We show that different explanation methods characterize non-additive components in a black-box model's prediction function in different ways. We use the concepts of main and total effects to anchor additive explanations, and quantitatively evaluate additive and non-additive explanations. Even though distilled explanations are generally the most accurate additive explanations, non-additive explanations such as tree explanations that explicitly model non-additive components tend to be even more accurate. Despite this, our user study showed that machine learning practitioners were better able to leverage additive explanations for various tasks. These considerations should be taken into account when considering which explanation to trust and use to explain black-box models.

In this paper, we introduce a conformal prediction method to construct prediction sets in a oneshot federated learning setting. More specifically, we define a quantile-of-quantiles estimator and prove that for any distribution, it is possible to output prediction sets with desired coverage in only one round of communication. To mitigate privacy issues, we also describe a locally differentially private version of our estimator. Finally, over a wide range of experiments, we show that our method returns prediction sets with coverage and length very similar to those obtained in a centralized setting. Overall, these results demonstrate that our method is particularly well-suited to perform conformal predictions in a one-shot federated learning setting.

In this paper, we present a linear and reversible programming language with inductives types and recursion. The semantics of the languages is based on pattern-matching; we show how ensuring syntactical exhaustivity and non-overlapping of clauses is enough to ensure reversibility. The language allows to represent any Primitive Recursive Function. We then give a Curry-Howard correspondence with the logic $\mu$MALL: linear logic extended with least fixed points allowing inductive statements. The critical part of our work is to show how primitive recursion yields circular proofs that satisfy $\mu$MALL validity criterion and how the language simulates the cut-elimination procedure of $\mu$MALL.

In this paper, we propose a new event memory architecture (MemNet) for recurrent neural networks, which is universal for different types of time series data such as scalar, multivariate or symbolic. Unlike other external neural memory architectures, it stores key-value pairs, which separate the information for addressing and for content to improve the representation, as in the digital archetype. Moreover, the key-value pairs also avoid the compromise between memory depth and resolution that applies to memories constructed by the model state. One of the MemNet key characteristics is that it requires only linear adaptive mapping functions while implementing a nonlinear operation on the input data. MemNet architecture can be applied without modifications to scalar time series, logic operators on strings, and also to natural language processing, providing state-of-the-art results in all application domains such as the chaotic time series, the symbolic operation tasks, and the question-answering tasks (bAbI). Finally, controlled by five linear layers, MemNet requires a much smaller number of training parameters than other external memory networks as well as the transformer network. The space complexity of MemNet equals a single self-attention layer. It greatly improves the efficiency of the attention mechanism and opens the door for IoT applications.

In this paper, we propose a method for estimating model parameters using Small-Angle Scattering (SAS) data based on the Bayesian inference. Conventional SAS data analyses involve processes of manual parameter adjustment by analysts or optimization using gradient methods. These analysis processes tend to involve heuristic approaches and may lead to local solutions.Furthermore, it is difficult to evaluate the reliability of the results obtained by conventional analysis methods. Our method solves these problems by estimating model parameters as probability distributions from SAS data using the framework of the Bayesian inference. We evaluate the performance of our method through numerical experiments using artificial data of representative measurement target models.From the results of the numerical experiments, we show that our method provides not only high accuracy and reliability of estimation, but also perspectives on the transition point of estimability with respect to the measurement time and the lower bound of the angular domain of the measured data.

In this paper, we propose an iterative framework, which consists of two phases: a generation phase and a training phase, to generate realistic training data and yield a supervised homography network. In the generation phase, given an unlabeled image pair, we utilize the pre-estimated dominant plane masks and homography of the pair, along with another sampled homography that serves as ground truth to generate a new labeled training pair with realistic motion. In the training phase, the generated data is used to train the supervised homography network, in which the training data is refined via a content consistency module and a quality assessment module. Once an iteration is finished, the trained network is used in the next data generation phase to update the pre-estimated homography. Through such an iterative strategy, the quality of the dataset and the performance of the network can be gradually and simultaneously improved. Experimental results show that our method achieves state-of-the-art performance and existing supervised methods can be also improved based on the generated dataset. Code and dataset are available at //github.com/megvii-research/RealSH.

Non-IID data present a tough challenge for federated learning. In this paper, we explore a novel idea of facilitating pairwise collaborations between clients with similar data. We propose FedAMP, a new method employing federated attentive message passing to facilitate similar clients to collaborate more. We establish the convergence of FedAMP for both convex and non-convex models, and propose a heuristic method to further improve the performance of FedAMP when clients adopt deep neural networks as personalized models. Our extensive experiments on benchmark data sets demonstrate the superior performance of the proposed methods.

The key issue of few-shot learning is learning to generalize. In this paper, we propose a large margin principle to improve the generalization capacity of metric based methods for few-shot learning. To realize it, we develop a unified framework to learn a more discriminative metric space by augmenting the softmax classification loss function with a large margin distance loss function for training. Extensive experiments on two state-of-the-art few-shot learning models, graph neural networks and prototypical networks, show that our method can improve the performance of existing models substantially with very little computational overhead, demonstrating the effectiveness of the large margin principle and the potential of our method.

北京阿比特科技有限公司