In this paper, we propose two new performance metrics, coined the Version Innovation Age (VIA) and the Age of Incorrect Version (AoIV) for real-time monitoring of a two-state Markov process over an unreliable channel. We analyze their performance under the change-aware, semantics-aware, and randomized stationary sampling and transmission policies. We derive closed-form expressions for the distribution and the average of VIA, AoIV, and AoII for these policies. We then formulate and solve an optimization problem to minimize the average VIA, subject to constraints on the time-averaged sampling cost and time-averaged reconstruction error. Finally, we compare the performance of various sampling and transmission policies and identify the conditions under which each policy outperforms the others in optimizing the proposed metrics.
In this paper, we explore the descriptive complexity theory of finite groups by examining the power of the second Ehrenfeucht-Fra\"iss\'e bijective pebble game in Hella's (Ann. Pure Appl. Log., 1989) heirarchy. This is a Spoiler-Duplicator game in which Spoiler can place up to two pebbles each round. While it trivially solves graph isomorphism, it may be nontrivial for finite groups, and other ternary relational structures. We first provide a novel generalization of Weisfeiler-Leman (WL) coloring, which we call 2-ary WL. We then show that the 2-ary WL is equivalent to the second Ehrenfeucht-Fra\"iss\'e bijective pebble game in Hella's heirarchy. Our main result is that, in the pebble game characterization, only $O(1)$ pebbles and $O(1)$ rounds are sufficient to identify all groups without Abelian normal subgroups (a class of groups for which isomorphism testing is known to be in $\mathsf{P}$; Babai, Codenotti, & Qiao, ICALP 2012). In particular, we show that within the first few rounds, Spoiler can force Duplicator to select an isomorphism between two such groups at each subsequent round. By Hella's results (\emph{ibid.}), this is equivalent to saying that these groups are identified by formulas in first-order logic with generalized 2-ary quantifiers, using only $O(1)$ variables and $O(1)$ quantifier depth.
In this paper, we tackle the problem of Egocentric Human-Object Interaction (EHOI) detection in an industrial setting. To overcome the lack of public datasets in this context, we propose a pipeline and a tool for generating synthetic images of EHOIs paired with several annotations and data signals (e.g., depth maps or segmentation masks). Using the proposed pipeline, we present EgoISM-HOI a new multimodal dataset composed of synthetic EHOI images in an industrial environment with rich annotations of hands and objects. To demonstrate the utility and effectiveness of synthetic EHOI data produced by the proposed tool, we designed a new method that predicts and combines different multimodal signals to detect EHOIs in RGB images. Our study shows that exploiting synthetic data to pre-train the proposed method significantly improves performance when tested on real-world data. Moreover, to fully understand the usefulness of our method, we conducted an in-depth analysis in which we compared and highlighted the superiority of the proposed approach over different state-of-the-art class-agnostic methods. To support research in this field, we publicly release the datasets, source code, and pre-trained models at //iplab.dmi.unict.it/egoism-hoi.
In this study, we introduce a method based on Separable Physics-Informed Neural Networks (SPINNs) for effectively solving the BGK model of the Boltzmann equation. While the mesh-free nature of PINNs offers significant advantages in handling high-dimensional partial differential equations (PDEs), challenges arise when applying quadrature rules for accurate integral evaluation in the BGK operator, which can compromise the mesh-free benefit and increase computational costs. To address this, we leverage the canonical polyadic decomposition structure of SPINNs and the linear nature of moment calculation, achieving a substantial reduction in computational expense for quadrature rule application. The multi-scale nature of the particle density function poses difficulties in precisely approximating macroscopic moments using neural networks. To improve SPINN training, we introduce the integration of Gaussian functions into SPINNs, coupled with a relative loss approach. This modification enables SPINNs to decay as rapidly as Maxwellian distributions, thereby enhancing the accuracy of macroscopic moment approximations. The relative loss design further ensures that both large and small-scale features are effectively captured by the SPINNs. The efficacy of our approach is demonstrated through a series of five numerical experiments, including the solution to a challenging 3D Riemann problem. These results highlight the potential of our novel method in efficiently and accurately addressing complex challenges in computational physics.
In this study, we delve into the Thresholding Linear Bandit (TLB) problem, a nuanced domain within stochastic Multi-Armed Bandit (MAB) problems, focusing on maximizing decision accuracy against a linearly defined threshold under resource constraints. We present LinearAPT, a novel algorithm designed for the fixed budget setting of TLB, providing an efficient solution to optimize sequential decision-making. This algorithm not only offers a theoretical upper bound for estimated loss but also showcases robust performance on both synthetic and real-world datasets. Our contributions highlight the adaptability, simplicity, and computational efficiency of LinearAPT, making it a valuable addition to the toolkit for addressing complex sequential decision-making challenges.
In this paper, we propose a class of nonlocal models to approximate the Poisson model on manifolds with homogeneous Neumann boundary condition, where the manifolds are assumed to be embedded in high dimensional Euclid spaces. In comparison to the existing nonlocal approximation of Poisson models with Neumann boundary, we optimize the truncation error of model by adding an augmented term along the $2\delta$ layer of boundary, with $2\delta$ be the nonlocal interaction horizon. Such term is formulated by the integration of the second order normal derivative of solution through the boundary, while the second order normal derivative is expressed as the difference between the interior Laplacian and the boundary Laplacian. The concentration of our paper is on the construction of nonlocal model, the well-posedness of model, and its second-order convergence rate to its local counterpart. The localization rate of our nonlocal model is currently optimal among all related works even for the case of high dimensional Euclid spaces.
In this paper, we introduce the Fongbe to French Speech Translation Corpus (FFSTC) for the first time. This corpus encompasses approximately 31 hours of collected Fongbe language content, featuring both French transcriptions and corresponding Fongbe voice recordings. FFSTC represents a comprehensive dataset compiled through various collection methods and the efforts of dedicated individuals. Furthermore, we conduct baseline experiments using Fairseq's transformer_s and conformer models to evaluate data quality and validity. Our results indicate a score of 8.96 for the transformer_s model and 8.14 for the conformer model, establishing a baseline for the FFSTC corpus.
In the Network Revenue Management (NRM) problem, products composed of up to L resources are sold to stochastically arriving customers. We take a randomized rounding approach to NRM, motivated by developments in Online Contention Resolution Schemes (OCRS). The goal is to take a fractional solution to NRM that satisfies the resource constraints in expectation, and implement it in an online policy that satisfies the resource constraints in any state, while (approximately) preserving all of the sales that were prescribed by the fractional solution. OCRS cannot be naively applied to NRM or revenue management problems in general, because customer substitution induces a negative correlation in products being demanded. We start by deriving an OCRS that achieves a guarantee of 1/(1+L) for NRM with customer substitution, matching a common benchmark in the literature. We then show how to beat this benchmark for all integers L>1 assuming no substitution, i.e., in the standard OCRS setting. By contrast, we show that this benchmark is unbeatable using OCRS or any fractional relaxation if there is customer substitution, for all integers L that are the power of a prime number. Finally, we show how to beat 1/(1+L) even with customer substitution, if the products comprise one item from each of up to L groups. Our results have corresponding implications for Online Combinatorial Auctions, in which buyers bid for bundles of up to L items, and buyers being single-minded is akin to no substitution. Our final result also beats 1/(1+L) for Prophet Inequality on the intersection of L partition matroids. All in all, our paper provides a unifying framework for applying OCRS to these problems, delineating the impact of substitution, and establishing a separation between the guarantees achievable with vs. without substitution under general resource constraints parametrized by L.
Contextualized embeddings are the preferred tool for modeling Lexical Semantic Change (LSC). Current evaluations typically focus on a specific task known as Graded Change Detection (GCD). However, performance comparison across work are often misleading due to their reliance on diverse settings. In this paper, we evaluate state-of-the-art models and approaches for GCD under equal conditions. We further break the LSC problem into Word-in-Context (WiC) and Word Sense Induction (WSI) tasks, and compare models across these different levels. Our evaluation is performed across different languages on eight available benchmarks for LSC, and shows that (i) APD outperforms other approaches for GCD; (ii) XL-LEXEME outperforms other contextualized models for WiC, WSI, and GCD, while being comparable to GPT-4; (iii) there is a clear need for improving the modeling of word meanings, as well as focus on how, when, and why these meanings change, rather than solely focusing on the extent of semantic change.
In this paper, we study the cooperative Multi-Agent Reinforcement Learning (MARL) problems using Reward Machines (RMs) to specify the reward functions such that the prior knowledge of high-level events in a task can be leveraged to facilitate the learning efficiency. Unlike the existing work that RMs have been incorporated into MARL for task decomposition and policy learning in relatively simple domains or with an assumption of independencies among the agents, we present Multi-Agent Reinforcement Learning with a Hierarchy of RMs (MAHRM) that is capable of dealing with more complex scenarios when the events among agents can occur concurrently and the agents are highly interdependent. MAHRM exploits the relationship of high-level events to decompose a task into a hierarchy of simpler subtasks that are assigned to a small group of agents, so as to reduce the overall computational complexity. Experimental results in three cooperative MARL domains show that MAHRM outperforms other MARL methods using the same prior knowledge of high-level events.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.