亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In recent years, anomaly events detection in crowd scenes attracts many researchers' attention, because of its importance to public safety. Existing methods usually exploit visual information to analyze whether any abnormal events have occurred due to only visual sensors are generally equipped in public places. However, when an abnormal event in crowds occurs, sound information may be discriminative to assist the crowd analysis system to determine whether there is an abnormality. Compare with vision information that is easily occluded, audio signals have a certain degree of penetration. Thus, this paper attempt to exploit multi-modal learning for modeling the audio and visual signals simultaneously. To be specific, we design a two-branch network to model different types of information. The first is a typical 3D CNN model to extract temporal appearance features from video clips. The second is an audio CNN for encoding Log Mel-Spectrogram of audio signals. Finally, by fusing the above features, a more accurate prediction will be produced. We conduct the experiments on SHADE dataset, a synthetic audio-visual dataset in surveillance scenes, and find introducing audio signals effectively improves the performance of anomaly events detection and outperforms other state-of-the-art methods. Furthermore, we will release the code and the pre-trained models as soon as possible.

相關內容

《計算機信息》雜志發表高質量的論文,擴大了運籌學和計算的范圍,尋求有關理論、方法、實驗、系統和應用方面的原創研究論文、新穎的調查和教程論文,以及描述新的和有用的軟件工具的論文。官網鏈接: · 表示學習 · 學成 · 泛函 · Performer ·
2021 年 12 月 29 日

For sequential data, change points are moments of abrupt regime switches. Such changes appear in different scenarios, including complex video surveillance, and we need to detect them as fast as possible. Classic approaches for change point detection (CPD) perform poorly for semi-structured sequential data because of the absence of adequate data representation learning procedure. We propose a principled loss function that approximates classic rigorous solutions but is differentiable and makes possible representation learning. This loss function balances change detection delay and time to false alarm to provide a successful model for CPD. In experiments, we consider simple series and more complex real-world image sequences and videos with change points. For more complex problems, we show that we need more meaningful representations tailored for the specificity of the CPD task. Taking this into account, the proposed approach InDiD improves baseline results of CPD for various data types. For explosion detection, F1 score for our method is $0.54$ compared to baseline scores $0.46$ and $0.30$.

The considerable significance of Anomaly Detection (AD) problem has recently drawn the attention of many researchers. Consequently, the number of proposed methods in this research field has been increased steadily. AD strongly correlates with the important computer vision and image processing tasks such as image/video anomaly, irregularity and sudden event detection. More recently, Deep Neural Networks (DNNs) offer a high performance set of solutions, but at the expense of a heavy computational cost. However, there is a noticeable gap between the previously proposed methods and an applicable real-word approach. Regarding the raised concerns about AD as an ongoing challenging problem, notably in images and videos, the time has come to argue over the pitfalls and prospects of methods have attempted to deal with visual AD tasks. Hereupon, in this survey we intend to conduct an in-depth investigation into the images/videos deep learning based AD methods. We also discuss current challenges and future research directions thoroughly.

We address the problem of anomaly detection, that is, detecting anomalous events in a video sequence. Anomaly detection methods based on convolutional neural networks (CNNs) typically leverage proxy tasks, such as reconstructing input video frames, to learn models describing normality without seeing anomalous samples at training time, and quantify the extent of abnormalities using the reconstruction error at test time. The main drawbacks of these approaches are that they do not consider the diversity of normal patterns explicitly, and the powerful representation capacity of CNNs allows to reconstruct abnormal video frames. To address this problem, we present an unsupervised learning approach to anomaly detection that considers the diversity of normal patterns explicitly, while lessening the representation capacity of CNNs. To this end, we propose to use a memory module with a new update scheme where items in the memory record prototypical patterns of normal data. We also present novel feature compactness and separateness losses to train the memory, boosting the discriminative power of both memory items and deeply learned features from normal data. Experimental results on standard benchmarks demonstrate the effectiveness and efficiency of our approach, which outperforms the state of the art.

Deep learning has been successfully applied to solve various complex problems ranging from big data analytics to computer vision and human-level control. Deep learning advances however have also been employed to create software that can cause threats to privacy, democracy and national security. One of those deep learning-powered applications recently emerged is "deepfake". Deepfake algorithms can create fake images and videos that humans cannot distinguish them from authentic ones. The proposal of technologies that can automatically detect and assess the integrity of digital visual media is therefore indispensable. This paper presents a survey of algorithms used to create deepfakes and, more importantly, methods proposed to detect deepfakes in the literature to date. We present extensive discussions on challenges, research trends and directions related to deepfake technologies. By reviewing the background of deepfakes and state-of-the-art deepfake detection methods, this study provides a comprehensive overview of deepfake techniques and facilitates the development of new and more robust methods to deal with the increasingly challenging deepfakes.

With the rise and development of deep learning, computer vision has been tremendously transformed and reshaped. As an important research area in computer vision, scene text detection and recognition has been inescapably influenced by this wave of revolution, consequentially entering the era of deep learning. In recent years, the community has witnessed substantial advancements in mindset, approach and performance. This survey is aimed at summarizing and analyzing the major changes and significant progresses of scene text detection and recognition in the deep learning era. Through this article, we devote to: (1) introduce new insights and ideas; (2) highlight recent techniques and benchmarks; (3) look ahead into future trends. Specifically, we will emphasize the dramatic differences brought by deep learning and the grand challenges still remained. We expect that this review paper would serve as a reference book for researchers in this field. Related resources are also collected and compiled in our Github repository: //github.com/Jyouhou/SceneTextPapers.

Object detection, as of one the most fundamental and challenging problems in computer vision, has received great attention in recent years. Its development in the past two decades can be regarded as an epitome of computer vision history. If we think of today's object detection as a technical aesthetics under the power of deep learning, then turning back the clock 20 years we would witness the wisdom of cold weapon era. This paper extensively reviews 400+ papers of object detection in the light of its technical evolution, spanning over a quarter-century's time (from the 1990s to 2019). A number of topics have been covered in this paper, including the milestone detectors in history, detection datasets, metrics, fundamental building blocks of the detection system, speed up techniques, and the recent state of the art detection methods. This paper also reviews some important detection applications, such as pedestrian detection, face detection, text detection, etc, and makes an in-deep analysis of their challenges as well as technical improvements in recent years.

Highlight detection has the potential to significantly ease video browsing, but existing methods often suffer from expensive supervision requirements, where human viewers must manually identify highlights in training videos. We propose a scalable unsupervised solution that exploits video duration as an implicit supervision signal. Our key insight is that video segments from shorter user-generated videos are more likely to be highlights than those from longer videos, since users tend to be more selective about the content when capturing shorter videos. Leveraging this insight, we introduce a novel ranking framework that prefers segments from shorter videos, while properly accounting for the inherent noise in the (unlabeled) training data. We use it to train a highlight detector with 10M hashtagged Instagram videos. In experiments on two challenging public video highlight detection benchmarks, our method substantially improves the state-of-the-art for unsupervised highlight detection.

Abnormal event detection in video is a challenging vision problem. Most existing approaches formulate abnormal event detection as an outlier detection task, due to the scarcity of anomalous data during training. Because of the lack of prior information regarding abnormal events, these methods are not fully-equipped to differentiate between normal and abnormal events. In this work, we formalize abnormal event detection as a one-versus-rest binary classification problem. Our contribution is two-fold. First, we introduce an unsupervised feature learning framework based on object-centric convolutional auto-encoders to encode both motion and appearance information. Second, we propose a supervised classification approach based on clustering the training samples into normality clusters. A one-versus-rest abnormal event classifier is then employed to separate each normality cluster from the rest. For the purpose of training the classifier, the other clusters act as dummy anomalies. During inference, an object is labeled as abnormal if the highest classification score assigned by the one-versus-rest classifiers is negative. Comprehensive experiments are performed on four benchmarks: Avenue, ShanghaiTech, UCSD and UMN. Our approach provides superior results on all four data sets. On the large-scale ShanghaiTech data set, our method provides an absolute gain of 12.1% in terms of frame-level AUC compared to the state-of-the-art method [Liu et al., CVPR 2018].

Generic object detection, aiming at locating object instances from a large number of predefined categories in natural images, is one of the most fundamental and challenging problems in computer vision. Deep learning techniques have emerged in recent years as powerful methods for learning feature representations directly from data, and have led to remarkable breakthroughs in the field of generic object detection. Given this time of rapid evolution, the goal of this paper is to provide a comprehensive survey of the recent achievements in this field brought by deep learning techniques. More than 250 key contributions are included in this survey, covering many aspects of generic object detection research: leading detection frameworks and fundamental subproblems including object feature representation, object proposal generation, context information modeling and training strategies; evaluation issues, specifically benchmark datasets, evaluation metrics, and state of the art performance. We finish by identifying promising directions for future research.

Automatically describing a video with natural language is regarded as a fundamental challenge in computer vision. The problem nevertheless is not trivial especially when a video contains multiple events to be worthy of mention, which often happens in real videos. A valid question is how to temporally localize and then describe events, which is known as "dense video captioning." In this paper, we present a novel framework for dense video captioning that unifies the localization of temporal event proposals and sentence generation of each proposal, by jointly training them in an end-to-end manner. To combine these two worlds, we integrate a new design, namely descriptiveness regression, into a single shot detection structure to infer the descriptive complexity of each detected proposal via sentence generation. This in turn adjusts the temporal locations of each event proposal. Our model differs from existing dense video captioning methods since we propose a joint and global optimization of detection and captioning, and the framework uniquely capitalizes on an attribute-augmented video captioning architecture. Extensive experiments are conducted on ActivityNet Captions dataset and our framework shows clear improvements when compared to the state-of-the-art techniques. More remarkably, we obtain a new record: METEOR of 12.96% on ActivityNet Captions official test set.

北京阿比特科技有限公司