亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In order to minimize the generalization error in neural networks, a novel technique to identify overfitting phenomena when training the learner is formally introduced. This enables support of a reliable and trustworthy early stopping condition, thus improving the predictive power of that type of modeling. Our proposal exploits the correlation over time in a collection of online indicators, namely characteristic functions for indicating if a set of hypotheses are met, associated with a range of independent stopping conditions built from a canary judgment to evaluate the presence of overfitting. That way, we provide a formal basis for decision making in terms of interrupting the learning process. As opposed to previous approaches focused on a single criterion, we take advantage of subsidiarities between independent assessments, thus seeking both a wider operating range and greater diagnostic reliability. With a view to illustrating the effectiveness of the halting condition described, we choose to work in the sphere of natural language processing, an operational continuum increasingly based on machine learning. As a case study, we focus on parser generation, one of the most demanding and complex tasks in the domain. The selection of cross-validation as a canary function enables an actual comparison with the most representative early stopping conditions based on overfitting identification, pointing to a promising start toward an optimal bias and variance control.

相關內容

Recent advances in neuroimaging have enabled studies in functional connectivity (FC) of human brain, alongside investigation of the neuronal basis of cognition. One important FC study is the representation of vision in human brain. The release of publicly available dataset BOLD5000 has made it possible to study the brain dynamics during visual tasks in greater detail. In this paper, a comprehensive analysis of fMRI time series (TS) has been performed to explore different types of visual brain networks (VBN). The novelty of this work lies in (1) constructing VBN with consistently significant direct connectivity using both marginal and partial correlation, which is further analyzed using graph theoretic measures, (2) classification of VBNs as formed by image complexity-specific TS, using graphical features. In image complexity-specific VBN classification, XGBoost yields average accuracy in the range of 86.5% to 91.5% for positively correlated VBN, which is 2% greater than that using negative correlation. This result not only reflects the distinguishing graphical characteristics of each image complexity-specific VBN, but also highlights the importance of studying both positively correlated and negatively correlated VBN to understand the how differently brain functions while viewing different complexities of real-world images.

Uncertainty is a key feature of any machine learning model and is particularly important in neural networks, which tend to be overconfident. This overconfidence is worrying under distribution shifts, where the model performance silently degrades as the data distribution diverges from the training data distribution. Uncertainty estimation offers a solution to overconfident models, communicating when the output should (not) be trusted. Although methods for uncertainty estimation have been developed, they have not been explicitly linked to the field of explainable artificial intelligence (XAI). Furthermore, literature in operations research ignores the actionability component of uncertainty estimation and does not consider distribution shifts. This work proposes a general uncertainty framework, with contributions being threefold: (i) uncertainty estimation in ML models is positioned as an XAI technique, giving local and model-specific explanations; (ii) classification with rejection is used to reduce misclassifications by bringing a human expert in the loop for uncertain observations; (iii) the framework is applied to a case study on neural networks in educational data mining subject to distribution shifts. Uncertainty as XAI improves the model's trustworthiness in downstream decision-making tasks, giving rise to more actionable and robust machine learning systems in operations research.

We demonstrate a comprehensive semiparametric approach to causal mediation analysis, addressing the complexities inherent in settings with longitudinal and continuous treatments, confounders, and mediators. Our methodology utilizes a nonparametric structural equation model and a cross-fitted sequential regression technique based on doubly robust pseudo-outcomes, yielding an efficient, asymptotically normal estimator without relying on restrictive parametric modeling assumptions. We are motivated by a recent scientific controversy regarding the effects of invasive mechanical ventilation (IMV) on the survival of COVID-19 patients, considering acute kidney injury (AKI) as a mediating factor. We highlight the possibility of "inconsistent mediation," in which the direct and indirect effects of the exposure operate in opposite directions. We discuss the significance of mediation analysis for scientific understanding and its potential utility in treatment decisions.

Accurately predicting the survival rate of cancer patients is crucial for aiding clinicians in planning appropriate treatment, reducing cancer-related medical expenses, and significantly enhancing patients' quality of life. Multimodal prediction of cancer patient survival offers a more comprehensive and precise approach. However, existing methods still grapple with challenges related to missing multimodal data and information interaction within modalities. This paper introduces SELECTOR, a heterogeneous graph-aware network based on convolutional mask encoders for robust multimodal prediction of cancer patient survival. SELECTOR comprises feature edge reconstruction, convolutional mask encoder, feature cross-fusion, and multimodal survival prediction modules. Initially, we construct a multimodal heterogeneous graph and employ the meta-path method for feature edge reconstruction, ensuring comprehensive incorporation of feature information from graph edges and effective embedding of nodes. To mitigate the impact of missing features within the modality on prediction accuracy, we devised a convolutional masked autoencoder (CMAE) to process the heterogeneous graph post-feature reconstruction. Subsequently, the feature cross-fusion module facilitates communication between modalities, ensuring that output features encompass all features of the modality and relevant information from other modalities. Extensive experiments and analysis on six cancer datasets from TCGA demonstrate that our method significantly outperforms state-of-the-art methods in both modality-missing and intra-modality information-confirmed cases. Our codes are made available at //github.com/panliangrui/Selector.

Older adults' growing use of the internet and related technologies, further accelerated by the COVID-19 pandemic, has prompted not only a critical examination of their behaviors and attitudes about online threats but also a greater understanding of the roles of specific characteristics within this population group. Based on survey data and using descriptive and inferential statistics, this empirical study delves into this matter. The behaviors and attitudes of a group of older adults aged 60 years and older (n=275) regarding different dimensions of online safety and cybersecurity are investigated. The results show that older adults report a discernible degree of concern about the security of their personal information. Despite the varied precautions taken, most of them do not know where to report online threats. What is more, regarding key demographics, the study found some significant differences in terms of gender and age group, but not disability status. This implies that older adults do not seem to constitute a homogeneous group when it comes to attitudes and behaviors regarding safety and security online. The study concludes that support systems should include older adults in the development of protective measures and acknowledge their diversity. The implications of the results are discussed and some directions for future research are proposed.

Numerical experiments indicate that deep learning algorithms overcome the curse of dimensionality when approximating solutions of semilinear PDEs. For certain linear PDEs and semilinear PDEs with gradient-independent nonlinearities this has also been proved mathematically, i.e., it has been shown that the number of parameters of the approximating DNN increases at most polynomially in both the PDE dimension $d\in \mathbb{N}$ and the reciprocal of the prescribed accuracy $\epsilon\in (0,1)$. The main contribution of this paper is to rigorously prove for the first time that deep neural networks can also overcome the curse dimensionality in the approximation of a certain class of nonlinear PDEs with gradient-dependent nonlinearities.

Studying the function spaces defined by neural networks helps to understand the corresponding learning models and their inductive bias. While in some limits neural networks correspond to function spaces that are reproducing kernel Hilbert spaces, these regimes do not capture the properties of the networks used in practice. In contrast, in this paper we show that deep neural networks define suitable reproducing kernel Banach spaces. These spaces are equipped with norms that enforce a form of sparsity, enabling them to adapt to potential latent structures within the input data and their representations. In particular, leveraging the theory of reproducing kernel Banach spaces, combined with variational results, we derive representer theorems that justify the finite architectures commonly employed in applications. Our study extends analogous results for shallow networks and can be seen as a step towards considering more practically plausible neural architectures.

In many experimental contexts, whether and how network interactions impact the outcome of interest for both treated and untreated individuals are key concerns. Networks data is often assumed to perfectly represent these possible interactions. This paper considers the problem of estimating treatment effects when measured connections are, instead, a noisy representation of the true spillover pathways. We show that existing methods, using the potential outcomes framework, yield biased estimators in the presence of this mismeasurement. We develop a new method, using a class of mixture models, that can account for missing connections and discuss its estimation via the Expectation-Maximization algorithm. We check our method's performance by simulating experiments on real network data from 43 villages in India. Finally, we use data from a previously published study to show that estimates using our method are more robust to the choice of network measure.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

Recent advances in 3D fully convolutional networks (FCN) have made it feasible to produce dense voxel-wise predictions of volumetric images. In this work, we show that a multi-class 3D FCN trained on manually labeled CT scans of several anatomical structures (ranging from the large organs to thin vessels) can achieve competitive segmentation results, while avoiding the need for handcrafting features or training class-specific models. To this end, we propose a two-stage, coarse-to-fine approach that will first use a 3D FCN to roughly define a candidate region, which will then be used as input to a second 3D FCN. This reduces the number of voxels the second FCN has to classify to ~10% and allows it to focus on more detailed segmentation of the organs and vessels. We utilize training and validation sets consisting of 331 clinical CT images and test our models on a completely unseen data collection acquired at a different hospital that includes 150 CT scans, targeting three anatomical organs (liver, spleen, and pancreas). In challenging organs such as the pancreas, our cascaded approach improves the mean Dice score from 68.5 to 82.2%, achieving the highest reported average score on this dataset. We compare with a 2D FCN method on a separate dataset of 240 CT scans with 18 classes and achieve a significantly higher performance in small organs and vessels. Furthermore, we explore fine-tuning our models to different datasets. Our experiments illustrate the promise and robustness of current 3D FCN based semantic segmentation of medical images, achieving state-of-the-art results. Our code and trained models are available for download: //github.com/holgerroth/3Dunet_abdomen_cascade.

北京阿比特科技有限公司