We develop randomized matrix-free algorithms for estimating partial traces. Our algorithm improves on the typicality-based approach used in [T. Chen and Y-C. Cheng, Numerical computation of the equilibrium-reduced density matrix for strongly coupled open quantum systems, J. Chem. Phys. 157, 064106 (2022)] by deflating important subspaces (e.g. corresponding to the low-energy eigenstates) explicitly. This results in a significant variance reduction for matrices with quickly decaying singular values. We then apply our algorithm to study the thermodynamics of several Heisenberg spin systems, particularly the entanglement spectrum and ergotropy.
We present a rigorous and precise analysis of the maximum degree and the average degree in a dynamic duplication-divergence graph model introduced by Sol\'e, Pastor-Satorras et al. in which the graph grows according to a duplication-divergence mechanism, i.e. by iteratively creating a copy of some node and then randomly alternating the neighborhood of a new node with probability $p$. This model captures the growth of some real-world processes e.g. biological or social networks. In this paper, we prove that for some $0 < p < 1$ the maximum degree and the average degree of a duplication-divergence graph on $t$ vertices are asymptotically concentrated with high probability around $t^p$ and $\max\{t^{2 p - 1}, 1\}$, respectively, i.e. they are within at most a polylogarithmic factor from these values with probability at least $1 - t^{-A}$ for any constant $A > 0$.
Robust Markov Decision Processes (RMDPs) are a widely used framework for sequential decision-making under parameter uncertainty. RMDPs have been extensively studied when the objective is to maximize the discounted return, but little is known for average optimality (optimizing the long-run average of the rewards obtained over time) and Blackwell optimality (remaining discount optimal for all discount factors sufficiently close to 1). In this paper, we prove several foundational results for RMDPs beyond the discounted return. We show that average optimal policies can be chosen stationary and deterministic for sa-rectangular RMDPs but, perhaps surprisingly, that history-dependent (Markovian) policies strictly outperform stationary policies for average optimality in s-rectangular RMDPs. We also study Blackwell optimality for sa-rectangular RMDPs, where we show that {\em approximate} Blackwell optimal policies always exist, although Blackwell optimal policies may not exist. We also provide a sufficient condition for their existence, which encompasses virtually any examples from the literature. We then discuss the connection between average and Blackwell optimality, and we describe several algorithms to compute the optimal average return. Interestingly, our approach leverages the connections between RMDPs and stochastic games.
Steepest descent methods combining complex contour deformation with numerical quadrature provide an efficient and accurate approach for the evaluation of highly oscillatory integrals. However, unless the phase function governing the oscillation is particularly simple, their application requires a significant amount of a priori analysis and expert user input, to determine the appropriate contour deformation, and to deal with the non-uniformity in the accuracy of standard quadrature techniques associated with the coalescence of stationary points (saddle points) with each other, or with the endpoints of the original integration contour. In this paper we present a novel algorithm for the numerical evaluation of oscillatory integrals with general polynomial phase functions, which automates the contour deformation process and avoids the difficulties typically encountered with coalescing stationary points and endpoints. The inputs to the algorithm are simply the phase and amplitude functions, the endpoints and orientation of the original integration contour, and a small number of numerical parameters. By a series of numerical experiments we demonstrate that the algorithm is accurate and efficient over a large range of frequencies, even for examples with a large number of coalescing stationary points and with endpoints at infinity. As a particular application, we use our algorithm to evaluate cuspoid canonical integrals from scattering theory. A Matlab implementation of the algorithm is made available and is called PathFinder.
In this paper, two novel classes of implicit exponential Runge-Kutta (ERK) methods are studied for solving highly oscillatory systems. First of all, we analyze the symplectic conditions of two kinds of exponential integrators, and present a first-order symplectic method. In order to solve highly oscillatory problems, the highly accurate implicit ERK integrators (up to order four) are formulated by comparing the Taylor expansions of numerical and exact solutions, it is shown that the order conditions of two new kinds of exponential methods are identical to the order conditions of classical Runge-Kutta (RK) methods. Moreover, we investigate the linear stability properties of these exponential methods. Finally, numerical results not only present the long time energy preservation of the first-order symplectic method, but also illustrate the accuracy and efficiency of these formulated methods in comparison with standard ERK methods.
We develop an NLP-based procedure for detecting systematic nonmeritorious consumer complaints, simply called systematic anomalies, among complaint narratives. While classification algorithms are used to detect pronounced anomalies, in the case of smaller and frequent systematic anomalies, the algorithms may falter due to a variety of reasons, including technical ones as well as natural limitations of human analysts. Therefore, as the next step after classification, we convert the complaint narratives into quantitative data, which are then analyzed using an algorithm for detecting systematic anomalies. We illustrate the entire procedure using complaint narratives from the Consumer Complaint Database of the Consumer Financial Protection Bureau.
We consider the application of the generalized Convolution Quadrature (gCQ) to approximate the solution of an important class of sectorial problems. The gCQ is a generalization of Lubich's Convolution Quadrature (CQ) that allows for variable steps. The available stability and convergence theory for the gCQ requires non realistic regularity assumptions on the data, which do not hold in many applications of interest, such as the approximation of subdiffusion equations. It is well known that for non smooth enough data the original CQ, with uniform steps, presents an order reduction close to the singularity. We generalize the analysis of the gCQ to data satisfying realistic regularity assumptions and provide sufficient conditions for stability and convergence on arbitrary sequences of time points. We consider the particular case of graded meshes and show how to choose them optimally, according to the behaviour of the data. An important advantage of the gCQ method is that it allows for a fast and memory reduced implementation. We describe how the fast and oblivious gCQ can be implemented and illustrate our theoretical results with several numerical experiments.
We introduce the new setting of open-vocabulary object 6D pose estimation, in which a textual prompt is used to specify the object of interest. In contrast to existing approaches, in our setting (i) the object of interest is specified solely through the textual prompt, (ii) no object model (e.g. CAD or video sequence) is required at inference, (iii) the object is imaged from two different viewpoints of two different scenes, and (iv) the object was not observed during the training phase. To operate in this setting, we introduce a novel approach that leverages a Vision-Language Model to segment the object of interest from two distinct scenes and to estimate its relative 6D pose. The key of our approach is a carefully devised strategy to fuse object-level information provided by the prompt with local image features, resulting in a feature space that can generalize to novel concepts. We validate our approach on a new benchmark based on two popular datasets, REAL275 and Toyota-Light, which collectively encompass 39 object instances appearing in four thousand image pairs. The results demonstrate that our approach outperforms both a well-established hand-crafted method and a recent deep learning-based baseline in estimating the relative 6D pose of objects in different scenes. Project website: //jcorsetti.github.io/oryon-website/.
Ductile damage models and cohesive laws incorporate the material plasticity entailing the growth of irrecoverable deformations even after complete failure. This unrealistic growth remains concealed until the unilateral effects arising from the crack closure emerge. We address this issue by proposing a new strategy to cope with the entire process of failure, from the very inception in the form of diffuse damage to the final stage, i.e. the emergence of sharp cracks. To this end, we introduce a new strain field, termed discontinuity strain, to the conventional additive strain decomposition to account for discontinuities in a continuous sense so that the standard principle of virtual work applies. We treat this strain field similar to a strong discontinuity, yet without introducing new kinematic variables and nonlinear boundary conditions. In this paper, we demonstrate the effectiveness of this new strategy at a simple ductile damage constitutive model. The model uses a scalar damage index to control the degradation process. The discontinuity strain field is injected into the strain decomposition if this damage index exceeds a certain threshold. The threshold corresponds to the limit at which the induced imperfections merge and form a discrete crack. With three-point bending tests under pure mode I and mixed-mode conditions, we demonstrate that this augmentation does not show the early crack closure artifact which is wrongly predicted by plastic damage formulations at load reversal. We also use the concrete damaged plasticity model provided in Abaqus commercial finite element program for our comparison. Lastly, a high-intensity low-cycle fatigue test demonstrates the unilateral effects resulting from the complete closure of the induced crack.
We present ParrotTTS, a modularized text-to-speech synthesis model leveraging disentangled self-supervised speech representations. It can train a multi-speaker variant effectively using transcripts from a single speaker. ParrotTTS adapts to a new language in low resource setup and generalizes to languages not seen while training the self-supervised backbone. Moreover, without training on bilingual or parallel examples, ParrotTTS can transfer voices across languages while preserving the speaker specific characteristics, e.g., synthesizing fluent Hindi speech using a French speaker's voice and accent. We present extensive results in monolingual and multi-lingual scenarios. ParrotTTS outperforms state-of-the-art multi-lingual TTS models using only a fraction of paired data as latter.
We study the statistical capacity of the classical binary perceptrons with general thresholds $\kappa$. After recognizing the connection between the capacity and the bilinearly indexed (bli) random processes, we utilize a recent progress in studying such processes to characterize the capacity. In particular, we rely on \emph{fully lifted} random duality theory (fl RDT) established in \cite{Stojnicflrdt23} to create a general framework for studying the perceptrons' capacities. Successful underlying numerical evaluations are required for the framework (and ultimately the entire fl RDT machinery) to become fully practically operational. We present results obtained in that directions and uncover that the capacity characterizations are achieved on the second (first non-trivial) level of \emph{stationarized} full lifting. The obtained results \emph{exactly} match the replica symmetry breaking predictions obtained through statistical physics replica methods in \cite{KraMez89}. Most notably, for the famous zero-threshold scenario, $\kappa=0$, we uncover the well known $\alpha\approx0.8330786$ scaled capacity.