亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Learning to optimize (L2O) has gained increasing popularity, which automates the design of optimizers by data-driven approaches. However, current L2O methods often suffer from poor generalization performance in at least two folds: (i) applying the L2O-learned optimizer to unseen optimizees, in terms of lowering their loss function values (optimizer generalization, or ``generalizable learning of optimizers"); and (ii) the test performance of an optimizee (itself as a machine learning model), trained by the optimizer, in terms of the accuracy over unseen data (optimizee generalization, or ``learning to generalize"). While the optimizer generalization has been recently studied, the optimizee generalization (or learning to generalize) has not been rigorously studied in the L2O context, which is the aim of this paper. We first theoretically establish an implicit connection between the local entropy and the Hessian, and hence unify their roles in the handcrafted design of generalizable optimizers as equivalent metrics of the landscape flatness of loss functions. We then propose to incorporate these two metrics as flatness-aware regularizers into the L2O framework in order to meta-train optimizers to learn to generalize, and theoretically show that such generalization ability can be learned during the L2O meta-training process and then transformed to the optimizee loss function. Extensive experiments consistently validate the effectiveness of our proposals with substantially improved generalization on multiple sophisticated L2O models and diverse optimizees. Our code is available at: //github.com/VITA-Group/Open-L2O/tree/main/Model_Free_L2O/L2O-Entropy.

相關內容

The recent proliferation of large-scale text-to-image models has led to growing concerns that such models may be misused to generate harmful, misleading, and inappropriate content. Motivated by this issue, we derive a technique inspired by continual learning to selectively forget concepts in pretrained deep generative models. Our method, dubbed Selective Amnesia, enables controllable forgetting where a user can specify how a concept should be forgotten. Selective Amnesia can be applied to conditional variational likelihood models, which encompass a variety of popular deep generative frameworks, including variational autoencoders and large-scale text-to-image diffusion models. Experiments across different models demonstrate that our approach induces forgetting on a variety of concepts, from entire classes in standard datasets to celebrity and nudity prompts in text-to-image models. Our code is publicly available at //github.com/clear-nus/selective-amnesia.

Large-scale multi-modal contrastive learning frameworks like CLIP typically require a large amount of image-text samples for training. However, these samples are always collected continuously in real scenarios. This paper discusses the feasibility of continual CLIP training using streaming data. Unlike continual learning based on self-supervised learning methods for pure images, which is empirically robust against catastrophic forgetting, CLIP's performance degeneration in the continual setting is significant and non-neglectable. By analyzing the changes in the model's representation space during continual CLIP training from a spatial geometry perspective, we explore and summarize these spatial variations as Spatial Disorder (SD), which can be divided into Intra-modal Rotation and Inter-modal Deviation. Moreover, we empirically and theoretically demonstrate how SD leads to a performance decline for CLIP on cross-modal retrieval tasks. To alleviate SD, we propose a new continual vision-language representation learning framework Mod-X: Maintain off-diagonal information-matriX. By selectively aligning the off-diagonal information distribution of contrastive matrices, the Mod-X improves the capability of the multi-modal model by maintaining the multi-modal representation space alignment on the old data domain during continuously fitting the new training data domain. Experiments on commonly used datasets with different scales and scopes have demonstrated the effectiveness of our method.

This study proposes a hybrid deep-learning-metaheuristic framework with a bi-level architecture for road network design problems (NDPs). We train a graph neural network (GNN) to approximate the solution of the user equilibrium (UE) traffic assignment problem, and use inferences made by the trained model to calculate fitness function evaluations of a genetic algorithm (GA) to approximate solutions for NDPs. Using two NDP variants and an exact solver as benchmark, we show that our proposed framework can provide solutions within 5% gap of the global optimum results given less than 1% of the time required for finding the optimal results. Our framework can be utilized within an expert system for infrastructure planning to intelligently determine the best infrastructure management decisions. Given the flexibility of the framework, it can easily be adapted to many other decision problems that can be modeled as bi-level problems on graphs. Moreover, we observe many interesting future directions, thus we propose a brief research agenda for this topic. The key observation inspiring influential future research was that fitness function evaluation time using the inferences made by the GNN model for the genetic algorithm was in the order of milliseconds, which points to an opportunity and a need for novel heuristics that 1) can cope well with noisy fitness function values provided by neural networks, and 2) can use the significantly higher computation time provided to them to explore the search space effectively (rather than efficiently). This opens a new avenue for a modern class of metaheuristics that are crafted for use with AI-powered predictors.

D-Adaptation is an approach to automatically setting the learning rate which asymptotically achieves the optimal rate of convergence for minimizing convex Lipschitz functions, with no back-tracking or line searches, and no additional function value or gradient evaluations per step. Our approach is the first hyper-parameter free method for this class without additional multiplicative log factors in the convergence rate. We present extensive experiments for SGD and Adam variants of our method, where the method automatically matches hand-tuned learning rates across more than a dozen diverse machine learning problems, including large-scale vision and language problems. An open-source implementation is available.

When learning tasks over time, artificial neural networks suffer from a problem known as Catastrophic Forgetting (CF). This happens when the weights of a network are overwritten during the training of a new task causing forgetting of old information. To address this issue, we propose MetA Reusable Knowledge or MARK, a new method that fosters weight reusability instead of overwriting when learning a new task. Specifically, MARK keeps a set of shared weights among tasks. We envision these shared weights as a common Knowledge Base (KB) that is not only used to learn new tasks, but also enriched with new knowledge as the model learns new tasks. Key components behind MARK are two-fold. On the one hand, a metalearning approach provides the key mechanism to incrementally enrich the KB with new knowledge and to foster weight reusability among tasks. On the other hand, a set of trainable masks provides the key mechanism to selectively choose from the KB relevant weights to solve each task. By using MARK, we achieve state of the art results in several popular benchmarks, surpassing the best performing methods in terms of average accuracy by over 10% on the 20-Split-MiniImageNet dataset, while achieving almost zero forgetfulness using 55% of the number of parameters. Furthermore, an ablation study provides evidence that, indeed, MARK is learning reusable knowledge that is selectively used by each task.

Domain generalization (DG), i.e., out-of-distribution generalization, has attracted increased interests in recent years. Domain generalization deals with a challenging setting where one or several different but related domain(s) are given, and the goal is to learn a model that can generalize to an unseen test domain. For years, great progress has been achieved. This paper presents the first review for recent advances in domain generalization. First, we provide a formal definition of domain generalization and discuss several related fields. Next, we thoroughly review the theories related to domain generalization and carefully analyze the theory behind generalization. Then, we categorize recent algorithms into three classes and present them in detail: data manipulation, representation learning, and learning strategy, each of which contains several popular algorithms. Third, we introduce the commonly used datasets and applications. Finally, we summarize existing literature and present some potential research topics for the future.

While existing work in robust deep learning has focused on small pixel-level $\ell_p$ norm-based perturbations, this may not account for perturbations encountered in several real world settings. In many such cases although test data might not be available, broad specifications about the types of perturbations (such as an unknown degree of rotation) may be known. We consider a setup where robustness is expected over an unseen test domain that is not i.i.d. but deviates from the training domain. While this deviation may not be exactly known, its broad characterization is specified a priori, in terms of attributes. We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space, without having access to the data from the test domain. Our adversarial training solves a min-max optimization problem, with the inner maximization generating adversarial perturbations, and the outer minimization finding model parameters by optimizing the loss on adversarial perturbations generated from the inner maximization. We demonstrate the applicability of our approach on three types of naturally occurring perturbations -- object-related shifts, geometric transformations, and common image corruptions. Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations. We demonstrate the usefulness of the proposed approach by showing the robustness gains of deep neural networks trained using our adversarial training on MNIST, CIFAR-10, and a new variant of the CLEVR dataset.

雖然機器學習已被廣泛應用于各個領域,但有一個領域顯然未被觸及,那就是為機器學習本身提供動力的工具的設計。在這項工作中,我們要問以下問題:機器學習中使用的算法的設計是否可能實現自動化?我們介紹了自動學習通用迭代優化算法的第一個框架。其關鍵思想是將優化算法的設計視為一個強化學習/最優控制問題,并將一個特定的更新公式(因此一個特定的優化算法)視為一個特定的策略。尋找最優策略對應于尋找最優優化算法。我們使用神經網絡參數化更新公式,并使用強化學習訓練它以避免復合誤差問題。這激發了后續各種關于元學習的工作。

地址:

//www.math.ias.edu/~ke.li/

付費5元查看完整內容

Clustering is one of the most fundamental and wide-spread techniques in exploratory data analysis. Yet, the basic approach to clustering has not really changed: a practitioner hand-picks a task-specific clustering loss to optimize and fit the given data to reveal the underlying cluster structure. Some types of losses---such as k-means, or its non-linear version: kernelized k-means (centroid based), and DBSCAN (density based)---are popular choices due to their good empirical performance on a range of applications. Although every so often the clustering output using these standard losses fails to reveal the underlying structure, and the practitioner has to custom-design their own variation. In this work we take an intrinsically different approach to clustering: rather than fitting a dataset to a specific clustering loss, we train a recurrent model that learns how to cluster. The model uses as training pairs examples of datasets (as input) and its corresponding cluster identities (as output). By providing multiple types of training datasets as inputs, our model has the ability to generalize well on unseen datasets (new clustering tasks). Our experiments reveal that by training on simple synthetically generated datasets or on existing real datasets, we can achieve better clustering performance on unseen real-world datasets when compared with standard benchmark clustering techniques. Our meta clustering model works well even for small datasets where the usual deep learning models tend to perform worse.

The key issue of few-shot learning is learning to generalize. In this paper, we propose a large margin principle to improve the generalization capacity of metric based methods for few-shot learning. To realize it, we develop a unified framework to learn a more discriminative metric space by augmenting the softmax classification loss function with a large margin distance loss function for training. Extensive experiments on two state-of-the-art few-shot learning models, graph neural networks and prototypical networks, show that our method can improve the performance of existing models substantially with very little computational overhead, demonstrating the effectiveness of the large margin principle and the potential of our method.

北京阿比特科技有限公司