亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study the operator norm discrepancy of i.i.d. random matrices, initiating the matrix-valued analog of a long line of work on the $\ell^{\infty}$ norm discrepancy of i.i.d. random vectors. First, we give a new analysis of the matrix hyperbolic cosine algorithm of Zouzias (2011), a matrix version of an online vector discrepancy algorithm of Spencer (1977) studied for average-case inputs by Bansal and Spencer (2020), for the case of i.i.d. random matrix inputs. We both give a general analysis and extract concrete bounds on the discrepancy achieved by this algorithm for matrices with independent entries and positive semidefinite matrices drawn from Wishart distributions. Second, using the first moment method, we give lower bounds on the discrepancy of random matrices, in particular showing that the matrix hyperbolic cosine algorithm achieves optimal discrepancy up to logarithmic terms in several cases. We both treat the special case of the Gaussian orthogonal ensemble and give a general result for low-rank matrix distributions that we apply to orthogonally invariant random projections.

相關內容

We prove the converse of the universal approximation theorem, i.e. a neural network (NN) encoding theorem which shows that for every stably converged NN of continuous activation functions, its weight matrix actually encodes a continuous function that approximates its training dataset to within a finite margin of error over a bounded domain. We further show that using the Eckart-Young theorem for truncated singular value decomposition of the weight matrix for every NN layer, we can illuminate the nature of the latent space manifold of the training dataset encoded and represented by every NN layer, and the geometric nature of the mathematical operations performed by each NN layer. Our results have implications for understanding how NNs break the curse of dimensionality by harnessing memory capacity for expressivity, and that the two are complementary. This Layer Matrix Decomposition (LMD) further suggests a close relationship between eigen-decomposition of NN layers and the latest advances in conceptualizations of Hopfield networks and Transformer NN models.

We study the question of whether submodular functions of random variables satisfying various notions of negative dependence satisfy Chernoff-like concentration inequalities. We prove such a concentration inequality for the lower tail when the random variables satisfy negative association or negative regression, resolving an open problem raised in (\citet{approx/QiuS22}). Previous work showed such concentration results for random variables that come from specific dependent-rounding algorithms (\citet{focs/ChekuriVZ10,soda/HarveyO14}). We discuss some applications of our results to combinatorial optimization and beyond.

We study the approximability of computing the partition functions of two-state spin systems. The problem is parameterized by a $2\times 2$ symmetric matrix. Previous results on this problem were restricted either to the case where the matrix has non-negative entries, or to the case where the diagonal entries are equal, i.e. Ising models. In this paper, we study the generalization to arbitrary $2\times 2$ interaction matrices with real entries. We show that in some regions of the parameter space, it's \#P-hard to even determine the sign of the partition function, while in other regions there are fully polynomial approximation schemes for the partition function. Our results reveal several new computational phase transitions.

Wireless communication systems to date primarily rely on the orthogonality of resources to facilitate the design and implementation, from user access to data transmission. Emerging applications and scenarios in the sixth generation (6G) wireless systems will require massive connectivity and transmission of a deluge of data, which calls for more flexibility in the design concept that goes beyond orthogonality. Furthermore, recent advances in signal processing and learning have attracted considerable attention, as they provide promising approaches to various complex and previously intractable problems of signal processing in many fields. This article provides an overview of research efforts to date in the field of signal processing and learning for next-generation multiple access, with an emphasis on massive random access and non-orthogonal multiple access. The promising interplay with new technologies and the challenges in learning-based NGMA are discussed.

We study the complexity of the problem of verifying differential privacy for while-like programs working over boolean values and making probabilistic choices. Programs in this class can be interpreted into finite-state discrete-time Markov Chains (DTMC). We show that the problem of deciding whether a program is differentially private for specific values of the privacy parameters is PSPACE-complete. To show that this problem is in PSPACE, we adapt classical results about computing hitting probabilities for DTMC. To show PSPACE-hardness we use a reduction from the problem of checking whether a program almost surely terminates or not. We also show that the problem of approximating the privacy parameters that a program provides is PSPACE-hard. Moreover, we investigate the complexity of similar problems also for several relaxations of differential privacy: R\'enyi differential privacy, concentrated differential privacy, and truncated concentrated differential privacy. For these notions, we consider gap-versions of the problem of deciding whether a program is private or not and we show that all of them are PSPACE-complete.

The investigation of the similarity between artists and music is crucial in music retrieval and recommendation, and addressing the challenge of the long-tail phenomenon is increasingly important. This paper proposes a Long-Tail Friendly Representation Framework (LTFRF) that utilizes neural networks to model the similarity relationship. Our approach integrates music, user, metadata, and relationship data into a unified metric learning framework, and employs a meta-consistency relationship as a regular term to introduce the Multi-Relationship Loss. Compared to the Graph Neural Network (GNN), our proposed framework improves the representation performance in long-tail scenarios, which are characterized by sparse relationships between artists and music. We conduct experiments and analysis on the AllMusic dataset, and the results demonstrate that our framework provides a favorable generalization of artist and music representation. Specifically, on similar artist/music recommendation tasks, the LTFRF outperforms the baseline by 9.69%/19.42% in Hit Ratio@10, and in long-tail cases, the framework achieves 11.05%/14.14% higher than the baseline in Consistent@10.

Despite the recent progress in deep learning, most approaches still go for a silo-like solution, focusing on learning each task in isolation: training a separate neural network for each individual task. Many real-world problems, however, call for a multi-modal approach and, therefore, for multi-tasking models. Multi-task learning (MTL) aims to leverage useful information across tasks to improve the generalization capability of a model. This thesis is concerned with multi-task learning in the context of computer vision. First, we review existing approaches for MTL. Next, we propose several methods that tackle important aspects of multi-task learning. The proposed methods are evaluated on various benchmarks. The results show several advances in the state-of-the-art of multi-task learning. Finally, we discuss several possibilities for future work.

Data augmentation, the artificial creation of training data for machine learning by transformations, is a widely studied research field across machine learning disciplines. While it is useful for increasing the generalization capabilities of a model, it can also address many other challenges and problems, from overcoming a limited amount of training data over regularizing the objective to limiting the amount data used to protect privacy. Based on a precise description of the goals and applications of data augmentation (C1) and a taxonomy for existing works (C2), this survey is concerned with data augmentation methods for textual classification and aims to achieve a concise and comprehensive overview for researchers and practitioners (C3). Derived from the taxonomy, we divided more than 100 methods into 12 different groupings and provide state-of-the-art references expounding which methods are highly promising (C4). Finally, research perspectives that may constitute a building block for future work are given (C5).

Federated Learning (FL) is a decentralized machine-learning paradigm, in which a global server iteratively averages the model parameters of local users without accessing their data. User heterogeneity has imposed significant challenges to FL, which can incur drifted global models that are slow to converge. Knowledge Distillation has recently emerged to tackle this issue, by refining the server model using aggregated knowledge from heterogeneous users, other than directly averaging their model parameters. This approach, however, depends on a proxy dataset, making it impractical unless such a prerequisite is satisfied. Moreover, the ensemble knowledge is not fully utilized to guide local model learning, which may in turn affect the quality of the aggregated model. Inspired by the prior art, we propose a data-free knowledge distillation} approach to address heterogeneous FL, where the server learns a lightweight generator to ensemble user information in a data-free manner, which is then broadcasted to users, regulating local training using the learned knowledge as an inductive bias. Empirical studies powered by theoretical implications show that, our approach facilitates FL with better generalization performance using fewer communication rounds, compared with the state-of-the-art.

Dynamic programming (DP) solves a variety of structured combinatorial problems by iteratively breaking them down into smaller subproblems. In spite of their versatility, DP algorithms are usually non-differentiable, which hampers their use as a layer in neural networks trained by backpropagation. To address this issue, we propose to smooth the max operator in the dynamic programming recursion, using a strongly convex regularizer. This allows to relax both the optimal value and solution of the original combinatorial problem, and turns a broad class of DP algorithms into differentiable operators. Theoretically, we provide a new probabilistic perspective on backpropagating through these DP operators, and relate them to inference in graphical models. We derive two particular instantiations of our framework, a smoothed Viterbi algorithm for sequence prediction and a smoothed DTW algorithm for time-series alignment. We showcase these instantiations on two structured prediction tasks and on structured and sparse attention for neural machine translation.

北京阿比特科技有限公司