亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The Multi-Criteria Test Suite Minimization (MCTSM) problem aims to remove redundant test cases, guided by adequacy criteria such as code coverage or fault detection capability. However, current techniques either exhibit a high loss of fault detection ability or face scalability challenges due to the NP-hard nature of the problem, which limits their practical utility. We propose TripRL, a novel technique that integrates traditional criteria such as statement coverage and fault detection ability with test coverage similarity into an Integer Linear Program (ILP), to produce a diverse reduced test suite with high test effectiveness. TripRL leverages bipartite graph representation and its embedding for concise ILP formulation and combines ILP with effective reinforcement learning (RL) training. This combination renders large-scale test suite minimization more scalable and enhances test effectiveness. Our empirical evaluations demonstrate that TripRL's runtime scales linearly with the magnitude of the MCTSM problem. Notably, for large test suites from the Defects4j dataset where existing approaches fail to provide solutions within a reasonable time frame, our technique consistently delivers solutions in less than 47 minutes. The reduced test suites produced by TripRL also maintain the original statement coverage and fault detection ability while having a higher potential to detect unknown faults.

相關內容

Bayesian optimisation requires fitting a Gaussian process model, which in turn requires specifying prior on the unknown black-box function -- most of the theoretical literature assumes this prior is known. However, it is common to have more than one possible prior for a given black-box function, for example suggested by domain experts with differing opinions. In some cases, the type-II maximum likelihood estimator for selecting prior enjoys the consistency guarantee, but it does not universally apply to all types of priors. If the problem is stationary, one could rely on the Regret Balancing scheme to conduct the optimisation, but in the case of time-varying problems, such a scheme cannot be used. To address this gap in existing research, we propose a novel algorithm, PE-GP-UCB, which is capable of solving time-varying Bayesian optimisation problems even without the exact knowledge of the function's prior. The algorithm relies on the fact that either the observed function values are consistent with some of the priors, in which case it is easy to reject the wrong priors, or the observations are consistent with all candidate priors, in which case it does not matter which prior our model relies on. We provide a regret bound on the proposed algorithm. Finally, we empirically evaluate our algorithm on toy and real-world time-varying problems and show that it outperforms the maximum likelihood estimator, fully Bayesian treatment of unknown prior and Regret Balancing.

Like humans, Large Language Models (LLMs) struggle to generate high-quality long-form text that adheres to strict requirements in a single pass. This challenge is unsurprising, as successful human writing, according to the Cognitive Writing Theory, is a complex cognitive process involving iterative planning, translating, reviewing, and monitoring. Motivated by these cognitive principles, we aim to equip LLMs with human-like cognitive writing capabilities through CogWriter, a novel training-free framework that transforms LLM constrained long-form text generation into a systematic cognitive writing paradigm. Our framework consists of two key modules: (1) a Planning Agent that performs hierarchical planning to decompose the task, and (2) multiple Generation Agents that execute these plans in parallel. The system maintains quality via continuous monitoring and reviewing mechanisms, which evaluate outputs against specified requirements and trigger necessary revisions. CogWriter demonstrates exceptional performance on LongGenBench, a benchmark for complex constrained long-form text generation. Even when using Qwen-2.5-14B as its backbone, CogWriter surpasses GPT-4o by 22% in complex instruction completion accuracy while reliably generating texts exceeding 10,000 words. We hope this cognitive science-inspired approach provides a paradigm for LLM writing advancements: \href{//github.com/KaiyangWan/CogWriter}{CogWriter}.

Detecting encryption-driven cyber threats remains a large challenge due to the evolving techniques employed to evade traditional detection mechanisms. An entropy-based computational framework was introduced to analyze multi-domain system variations, enabling the identification of malicious encryption behaviors through entropy deviations. By integrating entropy patterns across file operations, memory allocations, and network transmissions, a detection methodology was developed to differentiate between benign and ransomware-induced entropy shifts. A mathematical model was formulated to quantify entropy dynamics, incorporating time-dependent variations and weighted domain contributions to enhance anomaly detection. Experimental evaluations demonstrated that the proposed approach achieved high accuracy across diverse ransomware families while maintaining low false positive rates. Computational efficiency analysis indicated minimal processing overhead, suggesting feasibility for real-time implementation in security-sensitive environments. The study highlighted entropy fluctuations as a useful indicator for identifying malicious encryption processes, reinforcing entropy-driven methodologies as a viable component of cybersecurity strategies.

Temporal background information can improve causal discovery algorithms by orienting edges and identifying relevant adjustment sets. We develop the Temporal Greedy Equivalence Search (TGES) algorithm and terminology essential for score-based causal discovery with tiered background knowledge. TGES learns a restricted Markov equivalence class of directed acyclic graphs (DAGs) using observational data and tiered background knowledge. To construct TGES we formulate a scoring criterion that accounts for tiered background knowledge. We establish theoretical results for TGES, stating that the algorithm always returns a tiered maximally oriented partially directed acyclic graph (tiered MPDAG) and that this tiered MPDAG contains the true DAG in the large sample limit. We present a simulation study indicating a gain from using tiered background knowledge and an improved precision-recall trade-off compared to the temporal PC algorithm. We provide a real-world example on life-course health data.

Prompt engineering reduces reasoning mistakes in Large Language Models (LLMs). However, its effectiveness in mitigating vulnerabilities in LLM-generated code remains underexplored. To address this gap, we implemented a benchmark to automatically assess the impact of various prompt engineering strategies on code security. Our benchmark leverages two peer-reviewed prompt datasets and employs static scanners to evaluate code security at scale. We tested multiple prompt engineering techniques on GPT-3.5-turbo, GPT-4o, and GPT-4o-mini. Our results show that for GPT-4o and GPT-4o-mini, a security-focused prompt prefix can reduce the occurrence of security vulnerabilities by up to 56%. Additionally, all tested models demonstrated the ability to detect and repair between 41.9% and 68.7% of vulnerabilities in previously generated code when using iterative prompting techniques. Finally, we introduce a "prompt agent" that demonstrates how the most effective techniques can be applied in real-world development workflows.

Integrating Unmanned Aerial Vehicles (UAVs) with Unmanned Ground Vehicles (UGVs) provides an effective solution for persistent surveillance in disaster management. UAVs excel at covering large areas rapidly, but their range is limited by battery capacity. UGVs, though slower, can carry larger batteries for extended missions. By using UGVs as mobile recharging stations, UAVs can extend mission duration through periodic refueling, leveraging the complementary strengths of both systems. To optimize this energy-aware UAV-UGV cooperative routing problem, we propose a planning framework that determines optimal routes and recharging points between a UAV and a UGV. Our solution employs a deep reinforcement learning (DRL) framework built on an encoder-decoder transformer architecture with multi-head attention mechanisms. This architecture enables the model to sequentially select actions for visiting mission points and coordinating recharging rendezvous between the UAV and UGV. The DRL model is trained to minimize the age periods (the time gap between consecutive visits) of mission points, ensuring effective surveillance. We evaluate the framework across various problem sizes and distributions, comparing its performance against heuristic methods and an existing learning-based model. Results show that our approach consistently outperforms these baselines in both solution quality and runtime. Additionally, we demonstrate the DRL policy's applicability in a real-world disaster scenario as a case study and explore its potential for online mission planning to handle dynamic changes. Adapting the DRL policy for priority-driven surveillance highlights the model's generalizability for real-time disaster response.

The Aspect Sentiment Triplet Extraction (ASTE) task aims to extract aspect terms, opinion terms, and their corresponding sentiment polarity from a given sentence. It remains one of the most prominent subtasks in fine-grained sentiment analysis. Most existing approaches frame triplet extraction as a 2D table-filling process in an end-to-end manner, focusing primarily on word-level interactions while often overlooking sentence-level representations. This limitation hampers the model's ability to capture global contextual information, particularly when dealing with multi-word aspect and opinion terms in complex sentences. To address these issues, we propose boundary-driven table-filling with cross-granularity contrastive learning (BTF-CCL) to enhance the semantic consistency between sentence-level representations and word-level representations. By constructing positive and negative sample pairs, the model is forced to learn the associations at both the sentence level and the word level. Additionally, a multi-scale, multi-granularity convolutional method is proposed to capture rich semantic information better. Our approach can capture sentence-level contextual information more effectively while maintaining sensitivity to local details. Experimental results show that the proposed method achieves state-of-the-art performance on public benchmarks according to the F1 score.

Graph Neural Networks (GNNs) have shown promising results on a broad spectrum of applications. Most empirical studies of GNNs directly take the observed graph as input, assuming the observed structure perfectly depicts the accurate and complete relations between nodes. However, graphs in the real world are inevitably noisy or incomplete, which could even exacerbate the quality of graph representations. In this work, we propose a novel Variational Information Bottleneck guided Graph Structure Learning framework, namely VIB-GSL, in the perspective of information theory. VIB-GSL advances the Information Bottleneck (IB) principle for graph structure learning, providing a more elegant and universal framework for mining underlying task-relevant relations. VIB-GSL learns an informative and compressive graph structure to distill the actionable information for specific downstream tasks. VIB-GSL deduces a variational approximation for irregular graph data to form a tractable IB objective function, which facilitates training stability. Extensive experimental results demonstrate that the superior effectiveness and robustness of VIB-GSL.

Few-shot Knowledge Graph (KG) completion is a focus of current research, where each task aims at querying unseen facts of a relation given its few-shot reference entity pairs. Recent attempts solve this problem by learning static representations of entities and references, ignoring their dynamic properties, i.e., entities may exhibit diverse roles within task relations, and references may make different contributions to queries. This work proposes an adaptive attentional network for few-shot KG completion by learning adaptive entity and reference representations. Specifically, entities are modeled by an adaptive neighbor encoder to discern their task-oriented roles, while references are modeled by an adaptive query-aware aggregator to differentiate their contributions. Through the attention mechanism, both entities and references can capture their fine-grained semantic meanings, and thus render more expressive representations. This will be more predictive for knowledge acquisition in the few-shot scenario. Evaluation in link prediction on two public datasets shows that our approach achieves new state-of-the-art results with different few-shot sizes.

Multi-relation Question Answering is a challenging task, due to the requirement of elaborated analysis on questions and reasoning over multiple fact triples in knowledge base. In this paper, we present a novel model called Interpretable Reasoning Network that employs an interpretable, hop-by-hop reasoning process for question answering. The model dynamically decides which part of an input question should be analyzed at each hop; predicts a relation that corresponds to the current parsed results; utilizes the predicted relation to update the question representation and the state of the reasoning process; and then drives the next-hop reasoning. Experiments show that our model yields state-of-the-art results on two datasets. More interestingly, the model can offer traceable and observable intermediate predictions for reasoning analysis and failure diagnosis.

北京阿比特科技有限公司