亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

New 3+1D high-resolution radar sensors are gaining importance for 3D object detection in the automotive domain due to their relative affordability and improved detection compared to classic low-resolution radar sensors. One limitation of high-resolution radar sensors, compared to lidar sensors, is the sparsity of the generated point cloud. This sparsity could be partially overcome by accumulating radar point clouds of subsequent time steps. This contribution analyzes limitations of accumulating radar point clouds on the View-of-Delft dataset. By employing different ego-motion estimation approaches, the dataset's inherent constraints, and possible solutions are analyzed. Additionally, a learning-based instance motion estimation approach is deployed to investigate the influence of dynamic motion on the accumulated point cloud for object detection. Experiments document an improved object detection performance by applying an ego-motion estimation and dynamic motion correction approach.

相關內容

Interacting with the actual environment to acquire data is often costly and time-consuming in robotic tasks. Model-based offline reinforcement learning (RL) provides a feasible solution. On the one hand, it eliminates the requirements of interaction with the actual environment. On the other hand, it learns the transition dynamics and reward function from the offline datasets and generates simulated rollouts to accelerate training. Previous model-based offline RL methods adopt probabilistic ensemble neural networks (NN) to model aleatoric uncertainty and epistemic uncertainty. However, this results in an exponential increase in training time and computing resource requirements. Furthermore, these methods are easily disturbed by the accumulative errors of the environment dynamics models when simulating long-term rollouts. To solve the above problems, we propose an uncertainty-aware sequence modeling architecture called Environment Transformer. It models the probability distribution of the environment dynamics and reward function to capture aleatoric uncertainty and treats epistemic uncertainty as a learnable noise parameter. Benefiting from the accurate modeling of the transition dynamics and reward function, Environment Transformer can be combined with arbitrary planning, dynamics programming, or policy optimization algorithms for offline RL. In this case, we perform Conservative Q-Learning (CQL) to learn a conservative Q-function. Through simulation experiments, we demonstrate that our method achieves or exceeds state-of-the-art performance in widely studied offline RL benchmarks. Moreover, we show that Environment Transformer's simulated rollout quality, sample efficiency, and long-term rollout simulation capability are superior to those of previous model-based offline RL methods.

Collaborative autonomous multi-agent systems covering a specified area have many potential applications, such as UAV search and rescue, forest fire fighting, and real-time high-resolution monitoring. Traditional approaches for such coverage problems involve designing a model-based control policy based on sensor data. However, designing model-based controllers is challenging, and the state-of-the-art classical control policy still exhibits a large degree of sub-optimality. In this paper, we present a reinforcement learning (RL) approach for the multi-agent efficient domain coverage problem involving agents with second-order dynamics. Our approach is based on the Multi-Agent Proximal Policy Optimization Algorithm (MAPPO). Our proposed network architecture includes the incorporation of LSTM and self-attention, which allows the trained policy to adapt to a variable number of agents. Our trained policy significantly outperforms the state-of-the-art classical control policy. We demonstrate our proposed method in a variety of simulated experiments.

This paper addresses synthesizing receding-horizon controllers for nonlinear, control-affine dynamical systems under multiple incompatible hard and soft constraints. Handling incompatibility of constraints has mostly been addressed in literature by relaxing the soft constraints via slack variables. However, this may lead to trajectories that are far from the optimal solution and may compromise satisfaction of the hard constraints over time. In that regard, permanently dropping incompatible soft constraints may be beneficial for the satisfaction over time of the hard constraints (under the assumption that hard constraints are compatible with each other at initial time). To this end, motivated by approximate methods on the maximal feasible subset (maxFS) selection problem, we propose heuristics that depend on the Lagrange multipliers of the constraints. The main observation for using heuristics based on the Lagrange multipliers instead of slack variables (which is the standard approach in the related literature of finding maxFS) is that when the optimization is feasible, the Lagrange multiplier of a given constraint is non-zero, in contrast to the slack variable which is zero. This observation is particularly useful in the case of a dynamical nonlinear system where its control input is computed recursively as the optimization of a cost functional subject to the system dynamics and constraints, in the sense that the Lagrange multipliers of the constraints over a prediction horizon can indicate the constraints to be dropped so that the resulting constraints are compatible. The method is evaluated empirically in a case study with a robot navigating under multiple time and state constraints, and compared to a greedy method based on the Lagrange multiplier.

Multipliers are widely-used arithmetic operators in digital signal processing and machine learning circuits. Due to their relatively high complexity, they can have high latency and be a significant source of power consumption. One strategy to alleviate these limitations is to use approximate computing. This paper thus introduces an original FPGA-based approximate multiplier specifically optimized for machine learning computations. It utilizes dynamically reconfigurable lookup table (LUT) primitives in AMD-Xilinx technology to realize the core part of the computations. The paper provides an in-depth analysis of the hardware architecture, implementation outcomes, and accuracy evaluations of the multiplier proposed in INT8 precision. Implementation results on an AMD-Xilinx Kintex Ultrascale+ FPGA demonstrate remarkable savings of 64% and 67% in LUT utilization for signed multiplication and multiply-and-accumulation configurations, respectively, when compared to the standard Xilinx multiplier core. Accuracy measurements on four popular deep learning (DL) benchmarks indicate a minimal average accuracy decrease of less than 0.29% during post-training deployment, with the maximum reduction staying less than 0.33%. The source code of this work is available on GitHub.

Reconstructing transparent objects using affordable RGB-D cameras is a persistent challenge in robotic perception due to inconsistent appearances across views in the RGB domain and inaccurate depth readings in each single-view. We introduce a two-stage pipeline for reconstructing transparent objects tailored for mobile platforms. In the first stage, off-the-shelf monocular object segmentation and depth completion networks are leveraged to predict the depth of transparent objects, furnishing single-view shape prior. Subsequently, we propose Epipolar-guided Optical Flow (EOF) to fuse several single-view shape priors from the first stage to a cross-view consistent 3D reconstruction given camera poses estimated from opaque part of the scene. Our key innovation lies in EOF which employs boundary-sensitive sampling and epipolar-line constraints into optical flow to accurately establish 2D correspondences across multiple views on transparent objects. Quantitative evaluations demonstrate that our pipeline significantly outperforms baseline methods in 3D reconstruction quality, paving the way for more adept robotic perception and interaction with transparent objects.

Vision-Language Models (VLMs) such as CLIP are trained on large amounts of image-text pairs, resulting in remarkable generalization across several data distributions. The prohibitively expensive training and data collection/curation costs of these models make them valuable Intellectual Property (IP) for organizations. This motivates a vendor-client paradigm, where a vendor trains a large-scale VLM and grants only input-output access to clients on a pay-per-query basis in a black-box setting. The client aims to minimize inference cost by distilling the VLM to a student model using the limited available task-specific data, and further deploying this student model in the downstream application. While naive distillation largely improves the In-Domain (ID) accuracy of the student, it fails to transfer the superior out-of-distribution (OOD) generalization of the VLM teacher using the limited available labeled images. To mitigate this, we propose Vision-Language to Vision-Align, Distill, Predict (VL2V-ADiP), which first aligns the vision and language modalities of the teacher model with the vision modality of a pre-trained student model, and further distills the aligned VLM embeddings to the student. This maximally retains the pre-trained features of the student, while also incorporating the rich representations of the VLM image encoder and the superior generalization of the text embeddings. The proposed approach achieves state-of-the-art results on the standard Domain Generalization benchmarks in a black-box teacher setting, and also when weights of the VLM are accessible.

Integrated sensing and communication (ISAC) base stations can provide communication and wide range sensing information for vehicles via downlink (DL) transmission, thus enhancing vehicle driving safety. One major challenge for realizing high performance communication and sensing is how to deal with the DL mutual interference among adjacent ISAC base stations, which includes not only communication related interference, but also radar sensing related interference. In this paper, we establish a DL mutual interference model of adjacent ISAC base stations, and analyze the relationship for mutual interference channels between communications and radar sensing. To improve the sensing and communication performance, we propose a collaborative precoding design for coordinated adjacent base stations to mitigate the mutual interference under the transmit power constraint and constant modulus constraint, which is formulated as a non-convex optimization problem. We first relax the problem into a convex programming by omitting the rank constraint, and propose a joint optimization algorithm to solve the problem. We furthermore propose a sequential optimization algorithm, which divides the collaborative precoding design problem into four subproblems and finds the optimum via a gradient descent algorithm. Finally, we evaluate the collaborative precoding design algorithms by considering sensing and communication performance via numerical results.

This paper discusses predictive performance and processes undertaken on flight pricing data utilizing r2(r-square) and RMSE that leverages a large dataset, originally from Expedia.com, consisting of approximately 20 million records or 4.68 gigabytes. The project aims to determine the best models usable in the real world to predict airline ticket fares for non-stop flights across the US. Therefore, good generalization capability and optimized processing times are important measures for the model. We will discover key business insights utilizing feature importance and discuss the process and tools used for our analysis. Four regression machine learning algorithms were utilized: Random Forest, Gradient Boost Tree, Decision Tree, and Factorization Machines utilizing Cross Validator and Training Validator functions for assessing performance and generalization capability.

Image-level weakly supervised semantic segmentation (WSSS) is a fundamental yet challenging computer vision task facilitating scene understanding and automatic driving. Most existing methods resort to classification-based Class Activation Maps (CAMs) to play as the initial pseudo labels, which tend to focus on the discriminative image regions and lack customized characteristics for the segmentation task. To alleviate this issue, we propose a novel activation modulation and recalibration (AMR) scheme, which leverages a spotlight branch and a compensation branch to obtain weighted CAMs that can provide recalibration supervision and task-specific concepts. Specifically, an attention modulation module (AMM) is employed to rearrange the distribution of feature importance from the channel-spatial sequential perspective, which helps to explicitly model channel-wise interdependencies and spatial encodings to adaptively modulate segmentation-oriented activation responses. Furthermore, we introduce a cross pseudo supervision for dual branches, which can be regarded as a semantic similar regularization to mutually refine two branches. Extensive experiments show that AMR establishes a new state-of-the-art performance on the PASCAL VOC 2012 dataset, surpassing not only current methods trained with the image-level of supervision but also some methods relying on stronger supervision, such as saliency label. Experiments also reveal that our scheme is plug-and-play and can be incorporated with other approaches to boost their performance.

Deployment of Internet of Things (IoT) devices and Data Fusion techniques have gained popularity in public and government domains. This usually requires capturing and consolidating data from multiple sources. As datasets do not necessarily originate from identical sensors, fused data typically results in a complex data problem. Because military is investigating how heterogeneous IoT devices can aid processes and tasks, we investigate a multi-sensor approach. Moreover, we propose a signal to image encoding approach to transform information (signal) to integrate (fuse) data from IoT wearable devices to an image which is invertible and easier to visualize supporting decision making. Furthermore, we investigate the challenge of enabling an intelligent identification and detection operation and demonstrate the feasibility of the proposed Deep Learning and Anomaly Detection models that can support future application that utilizes hand gesture data from wearable devices.

北京阿比特科技有限公司