亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We extend and analyze the energy-based discontinuous Galerkin method for second order wave equations on staggered and structured meshes. By combining spatial staggering with local time-stepping near boundaries, the method overcomes the typical numerical stiffness associated with high order piecewise polynomial approximations. In one space dimension with periodic boundary conditions and suitably chosen numerical fluxes, we prove bounds on the spatial operators that establish stability for CFL numbers $c \frac {\Delta t}{h} < C$ independent of order when stability-enhanced explicit time-stepping schemes of matching order are used. For problems on bounded domains and in higher dimensions we demonstrate numerically that one can march explicitly with large time steps at high order temporal and spatial accuracy.

相關內容

In this work, we present a new high order Discontinuous Galerkin time integration scheme for second-order (in time) differential systems that typically arise from the space discretization of the elastodynamics equation. By rewriting the original equation as a system of first order differential equations we introduce the method and show that the resulting discrete formulation is well-posed, stable and retains super-optimal rate of convergence with respect to the discretization parameters, namely the time step and the polynomial approximation degree. A set of two- and three-dimensional numerical experiments confirm the theoretical bounds. Finally, the method is applied to real geophysical applications.

We consider reinforcement learning (RL) in Markov Decision Processes in which an agent repeatedly interacts with an environment that is modeled by a controlled Markov process. At each time step $t$, it earns a reward, and also incurs a cost-vector consisting of $M$ costs. We design learning algorithms that maximize the cumulative reward earned over a time horizon of $T$ time-steps, while simultaneously ensuring that the average values of the $M$ cost expenditures are bounded by agent-specified thresholds $c^{ub}_i,i=1,2,\ldots,M$. The considerations on the cumulative cost expenditures departs from the existing literature, in that the agent now additionally needs to balance the cost expenses in an online manner, while simultaneously performing the exploration-exploitation trade-off that is typically encountered in RL tasks. In order to measure the performance of a reinforcement learning algorithm that satisfies the average cost constraints, we define an $M+1$ dimensional regret vector that is composed of its reward regret, and $M$ cost regrets. The reward regret measures the sub-optimality in the cumulative reward, while the $i$-th component of the cost regret vector is the difference between its $i$-th cumulative cost expense and the expected cost expenditures $Tc^{ub}_i$. We prove that with a high probablity, the regret vector of UCRL-CMDP is upper-bounded as $O\left( S\sqrt{AT^{1.5}\log(T)}\right)$, where $S$ is the number of states, $A$ is the number of actions, and $T$ is the time horizon. We further show how to reduce the regret of a desired subset of the $M$ costs, at the expense of increasing the regrets of rewards and the remaining costs. To the best of our knowledge, ours is the only work that considers non-episodic RL under average cost constraints, and derive algorithms that can~\emph{tune the regret vector} according to the agent's requirements on its cost regrets.

In this paper, we formulate and study substructuring type algorithm for the Cahn-Hilliard (CH) equation, which was originally proposed to describe the phase separation phenomenon for binary melted alloy below the critical temperature and since then it has appeared in many fields ranging from tumour growth simulation, image processing, thin liquid films, population dynamics etc. Being a non-linear equation, it is important to develop robust numerical techniques to solve the CH equation. Here we present the formulation of Dirichlet-Neumann (DN) and Neumann-Neumann (NN) methods applied to CH equation and study their convergence behaviour. We consider the domain-decomposition based DN and NN methods in one and two space dimension for two subdomains and extend the study for multi-subdomain setting for NN method. We verify our findings with numerical results.

In this work, we introduce an inverse averaging finite element method (IAFEM) for solving the size-modified Poisson-Nernst-Planck (SMPNP) equations. Comparing with the classical Poisson-Nernst-Planck (PNP) equations, the SMPNP equations add a nonlinear term to each of the Nernst-Planck (NP) fluxes to describe the steric repulsion which can treat multiple nonuniform particle sizes in simulations. Since the new terms include sums and gradients of ion concentrations, the nonlinear coupling of SMPNP equations is much stronger than that of PNP equations. By introducing a generalized Slotboom transform, each of the size-modified NP equation is transformed into a self-adjoint equation with exponentially behaved coefficient, which has similar simple form to the standard NP equation with the Slotboom transformation. This treatment enables employing our recently developed inverse averaging technique to deal with the exponential coefficients of the reformulated formulations, featured with advantages of numerical stability and flux conservation especially in strong nonlinear and convection-dominated cases. Comparing with previous stabilization methods, the IAFEM proposed in this paper can still possess the numerical stability when dealing with convection-dominated problems. And it is more concise and easier to be numerically implemented. Numerical experiments about a model problem with analytic solutions are presented to verify the accuracy and order of IAFEM for SMPNP equations. Studies about the size-effects of a sphere model and an ion channel system are presented to show that our IAFEM is more effective and robust than the traditional finite element method (FEM) when solving SMPNP equations in simulations of biological systems.

For an abelian group $H$ acting on the set $[\ell]$, an $(H,\ell)$-lift of a graph $G_0$ is a graph obtained by replacing each vertex by $\ell$ copies, and each edge by a matching corresponding to the action of an element of $H$. In this work, we show the following explicit constructions of expanders obtained via abelian lifts. For every (transitive) abelian group $H \leqslant \text{Sym}(\ell)$, constant degree $d \ge 3$ and $\epsilon > 0$, we construct explicit $d$-regular expander graphs $G$ obtained from an $(H,\ell)$-lift of a (suitable) base $n$-vertex expander $G_0$ with the following parameters: (i) $\lambda(G) \le 2\sqrt{d-1} + \epsilon$, for any lift size $\ell \le 2^{n^{\delta}}$ where $\delta=\delta(d,\epsilon)$, (ii) $\lambda(G) \le \epsilon \cdot d$, for any lift size $\ell \le 2^{n^{\delta_0}}$ for a fixed $\delta_0 > 0$, when $d \ge d_0(\epsilon)$, or (iii) $\lambda(G) \le \widetilde{O}(\sqrt{d})$, for lift size ``exactly'' $\ell = 2^{\Theta(n)}$. As corollaries, we obtain explicit quantum lifted product codes of Panteleev and Kalachev of almost linear distance (and also in a wide range of parameters) and explicit classical quasi-cyclic LDPC codes with wide range of circulant sizes. Items $(i)$ and $(ii)$ above are obtained by extending the techniques of Mohanty, O'Donnell and Paredes [STOC 2020] for $2$-lifts to much larger abelian lift sizes (as a byproduct simplifying their construction). This is done by providing a new encoding of special walks arising in the trace power method, carefully "compressing'" depth-first search traversals. Result $(iii)$ is via a simpler proof of Agarwal et al. [SIAM J. Discrete Math 2019] at the expense of polylog factors in the expansion.

We propose a general and scalable approximate sampling strategy for probabilistic models with discrete variables. Our approach uses gradients of the likelihood function with respect to its discrete inputs to propose updates in a Metropolis-Hastings sampler. We show empirically that this approach outperforms generic samplers in a number of difficult settings including Ising models, Potts models, restricted Boltzmann machines, and factorial hidden Markov models. We also demonstrate the use of our improved sampler for training deep energy-based models on high dimensional discrete data. This approach outperforms variational auto-encoders and existing energy-based models. Finally, we give bounds showing that our approach is near-optimal in the class of samplers which propose local updates.

In this paper we study the convergence of generative adversarial networks (GANs) from the perspective of the informativeness of the gradient of the optimal discriminative function. We show that GANs without restriction on the discriminative function space commonly suffer from the problem that the gradient produced by the discriminator is uninformative to guide the generator. By contrast, Wasserstein GAN (WGAN), where the discriminative function is restricted to $1$-Lipschitz, does not suffer from such a gradient uninformativeness problem. We further show in the paper that the model with a compact dual form of Wasserstein distance, where the Lipschitz condition is relaxed, also suffers from this issue. This implies the importance of Lipschitz condition and motivates us to study the general formulation of GANs with Lipschitz constraint, which leads to a new family of GANs that we call Lipschitz GANs (LGANs). We show that LGANs guarantee the existence and uniqueness of the optimal discriminative function as well as the existence of a unique Nash equilibrium. We prove that LGANs are generally capable of eliminating the gradient uninformativeness problem. According to our empirical analysis, LGANs are more stable and generate consistently higher quality samples compared with WGAN.

With the rapid increase of large-scale, real-world datasets, it becomes critical to address the problem of long-tailed data distribution (i.e., a few classes account for most of the data, while most classes are under-represented). Existing solutions typically adopt class re-balancing strategies such as re-sampling and re-weighting based on the number of observations for each class. In this work, we argue that as the number of samples increases, the additional benefit of a newly added data point will diminish. We introduce a novel theoretical framework to measure data overlap by associating with each sample a small neighboring region rather than a single point. The effective number of samples is defined as the volume of samples and can be calculated by a simple formula $(1-\beta^{n})/(1-\beta)$, where $n$ is the number of samples and $\beta \in [0,1)$ is a hyperparameter. We design a re-weighting scheme that uses the effective number of samples for each class to re-balance the loss, thereby yielding a class-balanced loss. Comprehensive experiments are conducted on artificially induced long-tailed CIFAR datasets and large-scale datasets including ImageNet and iNaturalist. Our results show that when trained with the proposed class-balanced loss, the network is able to achieve significant performance gains on long-tailed datasets.

The Variational Auto-Encoder (VAE) is one of the most used unsupervised machine learning models. But although the default choice of a Gaussian distribution for both the prior and posterior represents a mathematically convenient distribution often leading to competitive results, we show that this parameterization fails to model data with a latent hyperspherical structure. To address this issue we propose using a von Mises-Fisher (vMF) distribution instead, leading to a hyperspherical latent space. Through a series of experiments we show how such a hyperspherical VAE, or $\mathcal{S}$-VAE, is more suitable for capturing data with a hyperspherical latent structure, while outperforming a normal, $\mathcal{N}$-VAE, in low dimensions on other data types.

We consider the exploration-exploitation trade-off in reinforcement learning and we show that an agent imbued with a risk-seeking utility function is able to explore efficiently, as measured by regret. The parameter that controls how risk-seeking the agent is can be optimized exactly, or annealed according to a schedule. We call the resulting algorithm K-learning and show that the corresponding K-values are optimistic for the expected Q-values at each state-action pair. The K-values induce a natural Boltzmann exploration policy for which the `temperature' parameter is equal to the risk-seeking parameter. This policy achieves an expected regret bound of $\tilde O(L^{3/2} \sqrt{S A T})$, where $L$ is the time horizon, $S$ is the number of states, $A$ is the number of actions, and $T$ is the total number of elapsed time-steps. This bound is only a factor of $L$ larger than the established lower bound. K-learning can be interpreted as mirror descent in the policy space, and it is similar to other well-known methods in the literature, including Q-learning, soft-Q-learning, and maximum entropy policy gradient, and is closely related to optimism and count based exploration methods. K-learning is simple to implement, as it only requires adding a bonus to the reward at each state-action and then solving a Bellman equation. We conclude with a numerical example demonstrating that K-learning is competitive with other state-of-the-art algorithms in practice.

北京阿比特科技有限公司