We propose and analyze a pressure-stabilized projection Lagrange--Galerkin scheme for the transient Oseen problem. The proposed scheme inherits the following advantages from the projection Lagrange--Galerkin scheme. The first advantage is computational efficiency. The scheme decouples the computation of each component of the velocity and pressure. The other advantage is essential unconditional stability. Here we also use the equal-order approximation for the velocity and pressure, and add a symmetric pressure stabilization term. This enriched pressure space enables us to obtain accurate solutions for small viscosity. First, we show an error estimate for the velocity for small viscosity. Then we show convergence results for the pressure. Numerical examples of a test problem show higher accuracy of the proposed scheme for small viscosity.
We develop, analyze and test adaptive penalty parameter methods. We prove unconditional stability for velocity when adapting the penalty parameter, $\epsilon,$ and stability of the velocity time derivative under a condition on the change of the penalty parameter, $\epsilon(t_{n+1})-\epsilon(t_n)$. The analysis and tests show that adapting $\epsilon(t_{n+1})$ in response to $\nabla\cdot u(t_n)$ removes the problem of picking $\epsilon$ and yields good approximations for the velocity. We provide error analysis and numerical tests to support these results. We supplement the adaptive-$\epsilon$ method by also adapting the time-step. The penalty parameter $\epsilon$ and time-step are adapted independently. We further compare first, second and variable order time-step algorithms. Accurate recovery of pressure remains an open problem.
In this article, we propose a higher order approximation to Caputo fractional (C-F) derivative using graded mesh and standard central difference approximation for space derivatives, in order to obtain the approximate solution of time fractional partial differential equations (TFPDE). The proposed approximation for C-F derivative tackles the singularity at origin effectively and is easily applicable to diverse problems. The stability analysis and truncation error bounds of the proposed scheme are discussed, along with this, analyzed the required regularity of the solution. Few numerical examples are presented to support the theory.
Element Method. The Finite Volume Method guarantees local and global mass conservation. A property not satisfied by the Finite Volume Method. On the down side, the Finite Volume Method requires non trivial modifications to attain high order approximations unlike the Finite Volume Method. It has been contended that the Discontinuous Galerkin Method, locally conservative and high order, is a natural progression for Coastal Ocean Modeling. Consequently, as a primer we consider the vertical ocean-slice model with the inclusion of density effects. To solve these non steady Partial Differential Equations, we develop a pressure projection method for solution. We propose a Hybridized Discontinuous Galerkin solution for the required Poisson Problem in each time step. The purpose, is to reduce the computational cost of classical applications of the Discontinuous Galerkin method. The Hybridized Discontinuous Galerkin method is first presented as a general elliptic problem solver. It is shown that a high order implementation yields fast and accurate approximations on coarse meshes.
In this paper, we discuss two-stage encoding algorithms capable of correcting a fraction of asymmetric errors. Suppose that the encoder transmits $n$ binary symbols $(x_1,\ldots,x_n)$ one-by-one over the Z-channel, in which a 1 is received only if a 1 is transmitted. At some designated moment, say $n_1$, the encoder uses noiseless feedback and adjusts further encoding strategy based on the partial output of the channel $(y_1,\ldots,y_{n_1})$. The goal is to transmit error-free as much information as possible under the assumption that the total number of errors inflicted by the Z-channel is limited by $\tau n$, $0<\tau<1$. We propose an encoding strategy that uses a list-decodable code at the first stage and a high-error low-rate code at the second stage. This strategy and our converse result yield that there is a sharp transition at $\tau=\max\limits_{0<w<1}\frac{w + w^3}{1+4w^3}\approx 0.44$ from positive rate to zero rate for two-stage encoding strategies. As side results, we derive bounds on the size of list-decodable codes for the Z-channel and prove that for a fraction $1/4+\epsilon$ of asymmetric errors, an error-correcting code contains at most $O(\epsilon^{-3/2})$ codewords.
We propose a uniform block diagonal preconditioner for condensed H(div)-conforming HDG schemes for parameter-dependent saddle point problems including the generalized Stokes problem and the linear elasticity. An optimal preconditioner is obtained for the stiffness matrix on the global velocity/displacement space via the auxiliary space preconditioning (ASP) technique [49]. A robust preconditioner spectrally equivalent to the Schur complement on the element-wise constant pressure space is also constructed. Finally, numerical results of the generalized Stokes and the steady linear elasticity equations verify the robustness of our proposed preconditioner with respect to model parameters and mesh size.
We consider Broyden's method and some accelerated schemes for nonlinear equations having a strongly regular singularity of first order with a one-dimensional nullspace. Our two main results are as follows. First, we show that the use of a preceding Newton-like step ensures convergence for starting points in a starlike domain with density 1. This extends the domain of convergence of these methods significantly. Second, we establish that the matrix updates of Broyden's method converge q-linearly with the same asymptotic factor as the iterates. This contributes to the long-standing question whether the Broyden matrices converge by showing that this is indeed the case for the setting at hand. Furthermore, we prove that the Broyden directions violate uniform linear independence, which implies that existing results for convergence of the Broyden matrices cannot be applied. Numerical experiments of high precision confirm the enlarged domain of convergence, the q-linear convergence of the matrix updates, and the lack of uniform linear independence. In addition, they suggest that these results can be extended to singularities of higher order and that Broyden's method can converge r-linearly without converging q-linearly. The underlying code is freely available.
The solution of time fractional partial differential equations in general exhibit a weak singularity near the initial time. In this article we propose a method for solving time fractional diffusion equation with nonlocal diffusion term. The proposed method comprises L1 scheme on graded mesh, finite element method and Newton's method. We discuss the well-posedness of the weak formulation at discrete level and derive \emph{a priori} error estimates for fully-discrete formulation in $L^2(\Omega)$ and $H^1(\Omega)$ norms. Finally, some numerical experiments are conducted to validate the theoretical findings.
This paper considers the temporal discretization of an inverse problem subject to a time fractional diffusion equation. Firstly, the convergence of the L1 scheme is established with an arbitrary sectorial operator of spectral angle $< \pi/2 $, that is the resolvent set of this operator contains $ \{z\in\mathbb C\setminus\{0\}:\ |\operatorname{Arg} z|< \theta\}$ for some $ \pi/2 < \theta < \pi $. The relationship between the time fractional order $\alpha \in (0, 1)$ and the constants in the error estimates is precisely characterized, revealing that the L1 scheme is robust as $ \alpha $ approaches $ 1 $. Then an inverse problem of a fractional diffusion equation is analyzed, and the convergence analysis of a temporal discretization of this inverse problem is given. Finally, numerical results are provided to confirm the theoretical results.
We introduce a new hybridized discontinuous Galerkin method for the incompressible magnetohydrodynamics equations. If particular velocity, pressure, magnetic field, and magnetic pressure spaces are employed for both element and trace solution fields, we arrive at an energy stable method which returns pointwise divergence-free velocity fields and magnetic fields and properly balances linear momentum. We discretize in time using a second-order-in-time generalized-$\alpha$ method, and we present a block iterative method for solving the resulting nonlinear system of equations at each time step. We numerically examine the effectiveness of our method using a manufactured solution and observe our method yields optimal convergence rates in the $L_2$ norm for the velocity field, pressure field, magnetic field, and magnetic pressure field. We further find our method is pressure robust. We then apply our method to a selection of benchmark problems and numerically confirm our method is energy stable.
Consider using the right-preconditioned GMRES for obtaining the minimum-norm solution of underdetermined inconsistent least squares problems. Morikuni (Ph.D. thesis, 2013) showed that for some inconsistent and ill-conditioned problems, the iterates may diverge. This is mainly because the Hessenberg matrix in the GMRES method becomes very ill-conditioned so that the backward substitution of the resulting triangular system becomes numerically unstable. We propose a stabilized GMRES based on solving the normal equations corresponding to the above triangular system using the standard Cholesky decomposition. This has the effect of shifting upwards the tiny singular values of the Hessenberg matrix which lead to an inaccurate solution. Thus, the process becomes numerically stable and the system becomes consistent, rendering better convergence and a more accurate solution. Numerical experiments show that the proposed method is robust and efficient. The method can be considered as a way of making GMRES stable for highly ill-conditioned inconsistent problems.