In this paper we present a novel method for efficient and effective 3D surface reconstruction in open scenes. Existing Neural Radiance Fields (NeRF) based works typically require extensive training and rendering time due to the adopted implicit representations. In contrast, 3D Gaussian splatting (3DGS) uses an explicit and discrete representation, hence the reconstructed surface is built by the huge number of Gaussian primitives, which leads to excessive memory consumption and rough surface details in sparse Gaussian areas. To address these issues, we propose Gaussian Voxel Kernel Functions (GVKF), which establish a continuous scene representation based on discrete 3DGS through kernel regression. The GVKF integrates fast 3DGS rasterization and highly effective scene implicit representations, achieving high-fidelity open scene surface reconstruction. Experiments on challenging scene datasets demonstrate the efficiency and effectiveness of our proposed GVKF, featuring with high reconstruction quality, real-time rendering speed, significant savings in storage and training memory consumption.
In this paper, we introduce Modality-Inconsistent Continual Learning (MICL), a new continual learning scenario for Multimodal Large Language Models (MLLMs) that involves tasks with inconsistent modalities (image, audio, or video) and varying task types (captioning or question-answering). Unlike existing vision-only or modality-incremental settings, MICL combines modality and task type shifts, both of which drive catastrophic forgetting. To address these challenges, we propose MoInCL, which employs a Pseudo Targets Generation Module to mitigate forgetting caused by task type shifts in previously seen modalities. It also incorporates Instruction-based Knowledge Distillation to preserve the model's ability to handle previously learned modalities when new ones are introduced. We benchmark MICL using a total of six tasks and conduct experiments to validate the effectiveness of our proposed MoInCL. The experimental results highlight the superiority of MoInCL, showing significant improvements over representative and state-of-the-art continual learning baselines.
This paper introduces a novel method for open-vocabulary 3D scene querying in autonomous driving by combining Language Embedded 3D Gaussians with Large Language Models (LLMs). We propose utilizing LLMs to generate both contextually canonical phrases and helping positive words for enhanced segmentation and scene interpretation. Our method leverages GPT-3.5 Turbo as an expert model to create a high-quality text dataset, which we then use to fine-tune smaller, more efficient LLMs for on-device deployment. Our comprehensive evaluation on the WayveScenes101 dataset demonstrates that LLM-guided segmentation significantly outperforms traditional approaches based on predefined canonical phrases. Notably, our fine-tuned smaller models achieve performance comparable to larger expert models while maintaining faster inference times. Through ablation studies, we discover that the effectiveness of helping positive words correlates with model scale, with larger models better equipped to leverage additional semantic information. This work represents a significant advancement towards more efficient, context-aware autonomous driving systems, effectively bridging 3D scene representation with high-level semantic querying while maintaining practical deployment considerations.
Scientific question answering (SQA) is an important task aimed at answering questions based on papers. However, current SQA datasets have limited reasoning types and neglect the relevance between tables and text, creating a significant gap with real scenarios. To address these challenges, we propose a QA benchmark for scientific tables and text with diverse reasoning types (SciTaT). To cover more reasoning types, we summarize various reasoning types from real-world questions. To involve both tables and text, we require the questions to incorporate tables and text as much as possible. Based on SciTaT, we propose a strong baseline (CaR), which combines various reasoning methods to address different reasoning types and process tables and text at the same time. CaR brings average improvements of 12.9% over other baselines on SciTaT, validating its effectiveness. Error analysis reveals the challenges of SciTaT, such as complex numerical calculations and domain knowledge.
Traditional greedy tokenization methods have been a critical step in Natural Language Processing (NLP), influencing how text is converted into tokens and directly impacting model performance. While subword tokenizers like Byte-Pair Encoding (BPE) are widely used, questions remain about their optimality across model scales and languages. In this work, we demonstrate through extensive experiments that an optimal BPE configuration significantly reduces token count compared to greedy segmentation, yielding improvements in token-saving percentages and performance benefits, particularly for smaller models. We evaluate tokenization performance across various intrinsic and extrinsic tasks, including generation and classification. Our findings suggest that compression-optimized tokenization strategies could provide substantial advantages for multilingual and low-resource language applications, highlighting a promising direction for further research and inclusive NLP.
In this paper, we introduce the Fully Homomorphic Integrity Model (HIM), a novel approach designed to enhance security, efficiency, and reliability in encrypted data processing, primarily within the health care industry. HIM addresses the key challenges that noise accumulation, computational overheads, and data integrity pose during homomorphic operations. Our contribution of HIM: advances in noise management through the rational number adjustment; key generation based on personalized prime numbers; and time complexity analysis details for key operations. In HIM, some additional mechanisms were introduced, including robust mechanisms of decryption. Indeed, the decryption mechanism ensures that the data recovered upon doing complex homomorphic computation will be valid and reliable. The healthcare id model is tested, and it supports real-time processing of data with privacy maintained concerning patients. It supports analytics and decision-making processes without any compromise on the integrity of information concerning patients. Output HIM promotes the efficiency of encryption to a greater extent as it reduces the encryption time up to 35ms and decryption time up to 140ms, which is better when compared to other models in the existence. Ciphertext size also becomes the smallest one, which is 4KB. Our experiments confirm that HIM is indeed a very efficient and secure privacy-preserving solution for healthcare applications
In recent years, Graph Neural Networks (GNNs) have become the de facto tool for learning node and graph representations. Most GNNs typically consist of a sequence of neighborhood aggregation (a.k.a., message-passing) layers, within which the representation of each node is updated based on those of its neighbors. The most expressive message-passing GNNs can be obtained through the use of the sum aggregator and of MLPs for feature transformation, thanks to their universal approximation capabilities. However, the limitations of MLPs recently motivated the introduction of another family of universal approximators, called Kolmogorov-Arnold Networks (KANs) which rely on a different representation theorem. In this work, we compare the performance of KANs against that of MLPs on graph learning tasks. We evaluate two different implementations of KANs using two distinct base families of functions, namely B-splines and radial basis functions. We perform extensive experiments on node classification, graph classification and graph regression datasets. Our results indicate that KANs are on-par with or better than MLPs on all studied tasks, making them viable alternatives, at the cost of some computational complexity. Code is available at https: //github.com/RomanBresson/KAGNN.
In this paper, we address the challenging task of multimodal mathematical reasoning by incorporating the ability of ``slow thinking" into multimodal large language models (MLLMs). Contrary to existing methods that rely on direct or fast thinking, our key idea is to construct long chains of thought (CoT) consisting of atomic actions in a step-by-step manner, guiding MLLMs to perform complex reasoning. To this end, we design a novel AtomThink framework composed of three key modules: (i) a CoT annotation engine that automatically generates high-quality CoT annotations to address the lack of high-quality visual mathematical data; (ii) an atomic step fine-tuning strategy that jointly optimizes an MLLM and a policy reward model (PRM) for step-wise reasoning; and (iii) four different search strategies that can be applied with the PRM to complete reasoning. Additionally, we propose AtomMATH, a large-scale multimodal dataset of long CoTs, and an atomic capability evaluation metric for mathematical tasks. Extensive experimental results show that the proposed AtomThink significantly improves the performance of baseline MLLMs, achieving approximately 50\% relative accuracy gains on MathVista and 120\% on MathVerse. To support the advancement of multimodal slow-thinking models, we will make our code and dataset publicly available on //github.com/Quinn777/AtomThink.
Text Classification is the most essential and fundamental problem in Natural Language Processing. While numerous recent text classification models applied the sequential deep learning technique, graph neural network-based models can directly deal with complex structured text data and exploit global information. Many real text classification applications can be naturally cast into a graph, which captures words, documents, and corpus global features. In this survey, we bring the coverage of methods up to 2023, including corpus-level and document-level graph neural networks. We discuss each of these methods in detail, dealing with the graph construction mechanisms and the graph-based learning process. As well as the technological survey, we look at issues behind and future directions addressed in text classification using graph neural networks. We also cover datasets, evaluation metrics, and experiment design and present a summary of published performance on the publicly available benchmarks. Note that we present a comprehensive comparison between different techniques and identify the pros and cons of various evaluation metrics in this survey.
In this paper, we propose a novel Feature Decomposition and Reconstruction Learning (FDRL) method for effective facial expression recognition. We view the expression information as the combination of the shared information (expression similarities) across different expressions and the unique information (expression-specific variations) for each expression. More specifically, FDRL mainly consists of two crucial networks: a Feature Decomposition Network (FDN) and a Feature Reconstruction Network (FRN). In particular, FDN first decomposes the basic features extracted from a backbone network into a set of facial action-aware latent features to model expression similarities. Then, FRN captures the intra-feature and inter-feature relationships for latent features to characterize expression-specific variations, and reconstructs the expression feature. To this end, two modules including an intra-feature relation modeling module and an inter-feature relation modeling module are developed in FRN. Experimental results on both the in-the-lab databases (including CK+, MMI, and Oulu-CASIA) and the in-the-wild databases (including RAF-DB and SFEW) show that the proposed FDRL method consistently achieves higher recognition accuracy than several state-of-the-art methods. This clearly highlights the benefit of feature decomposition and reconstruction for classifying expressions.
We study the problem of learning to reason in large scale knowledge graphs (KGs). More specifically, we describe a novel reinforcement learning framework for learning multi-hop relational paths: we use a policy-based agent with continuous states based on knowledge graph embeddings, which reasons in a KG vector space by sampling the most promising relation to extend its path. In contrast to prior work, our approach includes a reward function that takes the accuracy, diversity, and efficiency into consideration. Experimentally, we show that our proposed method outperforms a path-ranking based algorithm and knowledge graph embedding methods on Freebase and Never-Ending Language Learning datasets.