亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Bayesian optimization (BO) is a sample-efficient approach to optimizing costly-to-evaluate black-box functions. Most BO methods ignore how evaluation costs may vary over the optimization domain. However, these costs can be highly heterogeneous and are often unknown in advance. This occurs in many practical settings, such as hyperparameter tuning of machine learning algorithms or physics-based simulation optimization. Moreover, those few existing methods that acknowledge cost heterogeneity do not naturally accommodate a budget constraint on the total evaluation cost. This combination of unknown costs and a budget constraint introduces a new dimension to the exploration-exploitation trade-off, where learning about the cost incurs the cost itself. Existing methods do not reason about the various trade-offs of this problem in a principled way, leading often to poor performance. We formalize this claim by proving that the expected improvement and the expected improvement per unit of cost, arguably the two most widely used acquisition functions in practice, can be arbitrarily inferior with respect to the optimal non-myopic policy. To overcome the shortcomings of existing approaches, we propose the budgeted multi-step expected improvement, a non-myopic acquisition function that generalizes classical expected improvement to the setting of heterogeneous and unknown evaluation costs. Finally, we show that our acquisition function outperforms existing methods in a variety of synthetic and real problems.

相關內容

Double Q-learning is a classical method for reducing overestimation bias, which is caused by taking maximum estimated values in the Bellman operation. Its variants in the deep Q-learning paradigm have shown great promise in producing reliable value prediction and improving learning performance. However, as shown by prior work, double Q-learning is not fully unbiased and suffers from underestimation bias. In this paper, we show that such underestimation bias may lead to multiple non-optimal fixed points under an approximate Bellman operator. To address the concerns of converging to non-optimal stationary solutions, we propose a simple but effective approach as a partial fix for the underestimation bias in double Q-learning. This approach leverages an approximate dynamic programming to bound the target value. We extensively evaluate our proposed method in the Atari benchmark tasks and demonstrate its significant improvement over baseline algorithms.

Approximations of optimization problems arise in computational procedures and sensitivity analysis. The resulting effect on solutions can be significant, with even small approximations of components of a problem translating into large errors in the solutions. We specify conditions under which approximations are well behaved in the sense of minimizers, stationary points, and level-sets and this leads to a framework of consistent approximations. The framework is developed for a broad class of composite problems, which are neither convex nor smooth. We demonstrate the framework using examples from stochastic optimization, neural-network based machine learning, distributionally robust optimization, penalty and augmented Lagrangian methods, interior-point methods, homotopy methods, smoothing methods, extended nonlinear programming, difference-of-convex programming, and multi-objective optimization. An enhanced proximal method illustrates the algorithmic possibilities. A quantitative analysis supplements the development by furnishing rates of convergence.

When are inferences (whether Direct-Likelihood, Bayesian, or Frequentist) obtained from partial data valid? This paper answers this question by offering a new asymptotic theory about inference with missing data that is more general than existing theories. By using more powerful tools from real analysis and probability theory than those used in previous research, it proves that as the sample size increases and the extent of missingness decreases, the mean-loglikelihood function generated by partial data and that ignores the missingness mechanism will almost surely converge uniformly to that which would have been generated by complete data; and if the data are Missing at Random, this convergence depends only on sample size. Thus, inferences from partial data, such as posterior modes, uncertainty estimates, confidence intervals, likelihood ratios, test statistics, and indeed, all quantities or features derived from the partial-data loglikelihood function, will be consistently estimated. They will approximate their complete-data analogues. This adds to previous research which has only proved the consistency and asymptotic normality of the posterior mode, and developed separate theories for Direct-Likelihood, Bayesian, and Frequentist inference. Practical implications of this result are discussed, and the theory is verified using a previous study of International Human Rights Law.

Online mobile advertising ecosystems provide advertising and analytics services that collect, aggregate, process and trade rich amount of consumer's personal data and carries out interests-based ads targeting, which raised serious privacy risks and growing trends of users feeling uncomfortable while using internet services. In this paper, we address user's privacy concerns by developing an optimal dynamic optimisation cost-effective framework for preserving user privacy for profiling, ads-based inferencing, temporal apps usage behavioral patterns and interest-based ads targeting. A major challenge in solving this dynamic model is the lack of knowledge of time-varying updates during profiling process. We formulate a mixed-integer optimisation problem and develop an equivalent problem to show that proposed algorithm does not require knowledge of time-varying updates in user behavior. Following, we develop an online control algorithm to solve equivalent problem using Lyapunov optimisation and to overcome difficulty of solving nonlinear programming by decomposing it into various cases and achieve trade-off between user privacy, cost and targeted ads. We carry out extensive experimentations and demonstrate proposed framework's applicability by implementing its critical components using POC `System App'. We compare proposed framework with other privacy protecting approaches and investigate that it achieves better privacy and functionality for various performance parameters.

At the heart of improving conversational AI is the open problem of how to evaluate conversations. Issues with automatic metrics are well known (Liu et al., 2016, arXiv:1603.08023), with human evaluations still considered the gold standard. Unfortunately, how to perform human evaluations is also an open problem: differing data collection methods have varying levels of human agreement and statistical sensitivity, resulting in differing amounts of human annotation hours and labor costs. In this work we compare five different crowdworker-based human evaluation methods and find that different methods are best depending on the types of models compared, with no clear winner across the board. While this highlights the open problems in the area, our analysis leads to advice of when to use which one, and possible future directions.

In warehouses, order picking is known to be the most labor-intensive and costly task in which the employees account for a large part of the warehouse performance. Hence, many approaches exist, that optimize the order picking process based on diverse economic criteria. However, most of these approaches focus on a single economic objective at once and disregard ergonomic criteria in their optimization. Further, the influence of the placement of the items to be picked is underestimated and accordingly, too little attention is paid to the interdependence of these two problems. In this work, we aim at optimizing the storage assignment and the order picking problem within mezzanine warehouse with regards to their reciprocal influence. We propose a customized version of the Non-dominated Sorting Genetic Algorithm II (NSGA-II) for optimizing the storage assignment problem as well as an Ant Colony Optimization (ACO) algorithm for optimizing the order picking problem. Both algorithms incorporate multiple economic and ergonomic constraints simultaneously. Furthermore, the algorithms incorporate knowledge about the interdependence between both problems, aiming to improve the overall warehouse performance. Our evaluation results show that our proposed algorithms return better storage assignments and order pick routes compared to commonly used techniques for the following quality indicators for comparing Pareto fronts: Coverage, Generational Distance, Euclidian Distance, Pareto Front Size, and Inverted Generational Distance. Additionally, the evaluation regarding the interaction of both algorithms shows a better performance when combining both proposed algorithms.

Graph neural networks, a popular class of models effective in a wide range of graph-based learning tasks, have been shown to be vulnerable to adversarial attacks. While the majority of the literature focuses on such vulnerability in node-level classification tasks, little effort has been dedicated to analysing adversarial attacks on graph-level classification, an important problem with numerous real-life applications such as biochemistry and social network analysis. The few existing methods often require unrealistic setups, such as access to internal information of the victim models, or an impractically-large number of queries. We present a novel Bayesian optimisation-based attack method for graph classification models. Our method is black-box, query-efficient and parsimonious with respect to the perturbation applied. We empirically validate the effectiveness and flexibility of the proposed method on a wide range of graph classification tasks involving varying graph properties, constraints and modes of attack. Finally, we analyse common interpretable patterns behind the adversarial samples produced, which may shed further light on the adversarial robustness of graph classification models.

Attention-based neural networks have achieved state-of-the-art results on a wide range of tasks. Most such models use deterministic attention while stochastic attention is less explored due to the optimization difficulties or complicated model design. This paper introduces Bayesian attention belief networks, which construct a decoder network by modeling unnormalized attention weights with a hierarchy of gamma distributions, and an encoder network by stacking Weibull distributions with a deterministic-upward-stochastic-downward structure to approximate the posterior. The resulting auto-encoding networks can be optimized in a differentiable way with a variational lower bound. It is simple to convert any models with deterministic attention, including pretrained ones, to the proposed Bayesian attention belief networks. On a variety of language understanding tasks, we show that our method outperforms deterministic attention and state-of-the-art stochastic attention in accuracy, uncertainty estimation, generalization across domains, and robustness to adversarial attacks. We further demonstrate the general applicability of our method on neural machine translation and visual question answering, showing great potential of incorporating our method into various attention-related tasks.

We study the problem of learning in the stochastic shortest path (SSP) setting, where an agent seeks to minimize the expected cost accumulated before reaching a goal state. We design a novel model-based algorithm EB-SSP that carefully skews the empirical transitions and perturbs the empirical costs with an exploration bonus to guarantee both optimism and convergence of the associated value iteration scheme. We prove that EB-SSP achieves the minimax regret rate $\widetilde{O}(B_{\star} \sqrt{S A K})$, where $K$ is the number of episodes, $S$ is the number of states, $A$ is the number of actions and $B_{\star}$ bounds the expected cumulative cost of the optimal policy from any state, thus closing the gap with the lower bound. Interestingly, EB-SSP obtains this result while being parameter-free, i.e., it does not require any prior knowledge of $B_{\star}$, nor of $T_{\star}$ which bounds the expected time-to-goal of the optimal policy from any state. Furthermore, we illustrate various cases (e.g., positive costs, or general costs when an order-accurate estimate of $T_{\star}$ is available) where the regret only contains a logarithmic dependence on $T_{\star}$, thus yielding the first horizon-free regret bound beyond the finite-horizon MDP setting.

In this paper, we propose an efficient and fast object detector which can process hundreds of frames per second. To achieve this goal we investigate three main aspects of the object detection framework: network architecture, loss function and training data (labeled and unlabeled). In order to obtain compact network architecture, we introduce various improvements, based on recent work, to develop an architecture which is computationally light-weight and achieves a reasonable performance. To further improve the performance, while keeping the complexity same, we utilize distillation loss function. Using distillation loss we transfer the knowledge of a more accurate teacher network to proposed light-weight student network. We propose various innovations to make distillation efficient for the proposed one stage detector pipeline: objectness scaled distillation loss, feature map non-maximal suppression and a single unified distillation loss function for detection. Finally, building upon the distillation loss, we explore how much can we push the performance by utilizing the unlabeled data. We train our model with unlabeled data using the soft labels of the teacher network. Our final network consists of 10x fewer parameters than the VGG based object detection network and it achieves a speed of more than 200 FPS and proposed changes improve the detection accuracy by 14 mAP over the baseline on Pascal dataset.

北京阿比特科技有限公司