亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Time series data in real-world scenarios contain a substantial amount of nonlinear information, which significantly interferes with the training process of models, leading to decreased prediction performance. Therefore, during the time series forecasting process, extracting the local and global time series patterns and understanding the potential nonlinear features among different time observations are highly significant. To address this challenge, we introduce multi-resolution convolution and deformable convolution operations. By enlarging the receptive field using convolution kernels with different dilation factors to capture temporal correlation information at different resolutions, and adaptively adjusting the sampling positions through additional offset vectors, we enhance the network's ability to capture potential nonlinear features among time observations. Building upon this, we propose ACNet, an adaptive convolutional network designed to effectively model the local and global temporal dependencies and the nonlinear features between observations in multivariate time series. Specifically, by extracting and fusing time series features at different resolutions, we capture both local contextual information and global patterns in the time series. The designed nonlinear feature adaptive extraction module captures the nonlinear features among different time observations in the time series. We evaluated the performance of ACNet across twelve real-world datasets. The results indicate that ACNet consistently achieves state-of-the-art performance in both short-term and long-term forecasting tasks with favorable runtime efficiency.

相關內容

Networking:IFIP International Conferences on Networking。 Explanation:國際網絡會議。 Publisher:IFIP。 SIT:

Graph matching problem aims to identify node correspondence between two or more correlated graphs. Previous studies have primarily focused on models where only edge information is provided. However, in many social networks, not only the relationships between users, represented by edges, but also their personal information, represented by features, are present. In this paper, we address the challenge of identifying node correspondence in correlated graphs, where additional node features exist, as in many real-world settings. We propose a two-step procedure, where we initially match a subset of nodes only using edge information, and then match the remaining nodes using node features. We derive information-theoretic limits for exact graph matching on this model. Our approach provides a comprehensive solution to the real-world graph matching problem by providing systematic ways to utilize both edge and node information for exact matching of the graphs.

Stochastic diffusion processes are pervasive in nature, from the seemingly erratic Brownian motion to the complex interactions of synaptically-coupled spiking neurons. Recently, drawing inspiration from Langevin dynamics, neuromorphic diffusion models were proposed and have become one of the major breakthroughs in the field of generative artificial intelligence. Unlike discriminative models that have been well developed to tackle classification or regression tasks, diffusion models as well as other generative models such as ChatGPT aim at creating content based upon contexts learned. However, the more complex algorithms of these models result in high computational costs using today's technologies, creating a bottleneck in their efficiency, and impeding further development. Here, we develop a spintronic voltage-controlled magnetoelectric memory hardware for the neuromorphic diffusion process. The in-memory computing capability of our spintronic devices goes beyond current Von Neumann architecture, where memory and computing units are separated. Together with the non-volatility of magnetic memory, we can achieve high-speed and low-cost computing, which is desirable for the increasing scale of generative models in the current era. We experimentally demonstrate that the hardware-based true random diffusion process can be implemented for image generation and achieve comparable image quality to software-based training as measured by the Frechet inception distance (FID) score, achieving ~10^3 better energy-per-bit-per-area over traditional hardware.

Autonomous systems face the intricate challenge of navigating unpredictable environments and interacting with external objects. The successful integration of robotic agents into real-world situations hinges on their perception capabilities, which involve amalgamating world models and predictive skills. Effective perception models build upon the fusion of various sensory modalities to probe the surroundings. Deep learning applied to raw sensory modalities offers a viable option. However, learning-based perceptive representations become difficult to interpret. This challenge is particularly pronounced in soft robots, where the compliance of structures and materials makes prediction even harder. Our work addresses this complexity by harnessing a generative model to construct a multi-modal perception model for soft robots and to leverage proprioceptive and visual information to anticipate and interpret contact interactions with external objects. A suite of tools to interpret the perception model is furnished, shedding light on the fusion and prediction processes across multiple sensory inputs after the learning phase. We will delve into the outlooks of the perception model and its implications for control purposes.

Text anonymization is crucial for sharing sensitive data while maintaining privacy. Existing techniques face the emerging challenges of re-identification attack ability of Large Language Models (LLMs), which have shown advanced capability in memorizing detailed information and patterns as well as connecting disparate pieces of information. In defending against LLM-based re-identification attacks, anonymization could jeopardize the utility of the resulting anonymized data in downstream tasks -- the trade-off between privacy and data utility requires deeper understanding within the context of LLMs. This paper proposes a framework composed of three LLM-based components -- a privacy evaluator, a utility evaluator, and an optimization component, which work collaboratively to perform anonymization. To provide a practical model for large-scale and real-time environments, we distill the anonymization capabilities into a lightweight model using Direct Preference Optimization (DPO). Extensive experiments demonstrate that the proposed models outperform baseline models, showing robustness in reducing the risk of re-identification while preserving greater data utility in downstream tasks. Our code and dataset are available at //github.com/UKPLab/arxiv2024-rupta.

Programming recurrent spiking neural networks (RSNNs) to robustly perform multi-timescale computation remains a difficult challenge. To address this, we describe a single-shot weight learning scheme to embed robust multi-timescale dynamics into attractor-based RSNNs, by exploiting the properties of high-dimensional distributed representations. We embed finite state machines into the RSNN dynamics by superimposing a symmetric autoassociative weight matrix and asymmetric transition terms, which are each formed by the vector binding of an input and heteroassociative outer-products between states. Our approach is validated through simulations with highly non-ideal weights; an experimental closed-loop memristive hardware setup; and on Loihi 2, where it scales seamlessly to large state machines. This work introduces a scalable approach to embed robust symbolic computation through recurrent dynamics into neuromorphic hardware, without requiring parameter fine-tuning or significant platform-specific optimisation. Moreover, it demonstrates that distributed symbolic representations serve as a highly capable representation-invariant language for cognitive algorithms in neuromorphic hardware.

The increasing usage of IoT devices has generated an extensive volume of data which resulted in the establishment of data centers with well-structured computing infrastructure. Reducing underutilized resources of such data centers can be achieved by monitoring the tasks and offloading them across various compute units. This approach can also be used in mini mobile data ponds generated by edge devices and smart vehicles. This research aims to improve and utilize the usage of computing resources in distributed edge devices by forming a dynamic mesh network. The nodes in the mesh network shall share their computing tasks with another node that possesses unused computing resources. This proposed method ensures the minimization of data transfer between entities. The proposed AirDnD vision will be applied to a practical scenario relevant to an autonomous vehicle that approaches an intersection commonly known as ``looking around the corner'' in related literature, collecting essential computational results from nearby vehicles to enhance its perception. The proposed solution consists of three models that transform growing amounts of geographically distributed edge devices into a living organism.

We introduce a novel problem, i.e., the localization of an input image within a multi-modal reference map represented by a database of 3D scene graphs. These graphs comprise multiple modalities, including object-level point clouds, images, attributes, and relationships between objects, offering a lightweight and efficient alternative to conventional methods that rely on extensive image databases. Given the available modalities, the proposed method SceneGraphLoc learns a fixed-sized embedding for each node (i.e., representing an object instance) in the scene graph, enabling effective matching with the objects visible in the input query image. This strategy significantly outperforms other cross-modal methods, even without incorporating images into the map embeddings. When images are leveraged, SceneGraphLoc achieves performance close to that of state-of-the-art techniques depending on large image databases, while requiring three orders-of-magnitude less storage and operating orders-of-magnitude faster. The code will be made public.

Several applications in time series forecasting require predicting multiple steps ahead. Despite the vast amount of literature in the topic, both classical and recent deep learning based approaches have mostly focused on minimising performance averaged over the predicted window. We observe that this can lead to disparate distributions of errors across forecasting steps, especially for recent transformer architectures trained on popular forecasting benchmarks. That is, optimising performance on average can lead to undesirably large errors at specific time-steps. In this work, we present a Constrained Learning approach for long-term time series forecasting that aims to find the best model in terms of average performance that respects a user-defined upper bound on the loss at each time-step. We call our approach loss shaping constraints because it imposes constraints on the loss at each time step, and leverage recent duality results to show that despite its non-convexity, the resulting problem has a bounded duality gap. We propose a practical Primal-Dual algorithm to tackle it, and demonstrate that the proposed approach exhibits competitive average performance in time series forecasting benchmarks, while shaping the distribution of errors across the predicted window.

In semi-supervised domain adaptation, a few labeled samples per class in the target domain guide features of the remaining target samples to aggregate around them. However, the trained model cannot produce a highly discriminative feature representation for the target domain because the training data is dominated by labeled samples from the source domain. This could lead to disconnection between the labeled and unlabeled target samples as well as misalignment between unlabeled target samples and the source domain. In this paper, we propose a novel approach called Cross-domain Adaptive Clustering to address this problem. To achieve both inter-domain and intra-domain adaptation, we first introduce an adversarial adaptive clustering loss to group features of unlabeled target data into clusters and perform cluster-wise feature alignment across the source and target domains. We further apply pseudo labeling to unlabeled samples in the target domain and retain pseudo-labels with high confidence. Pseudo labeling expands the number of ``labeled" samples in each class in the target domain, and thus produces a more robust and powerful cluster core for each class to facilitate adversarial learning. Extensive experiments on benchmark datasets, including DomainNet, Office-Home and Office, demonstrate that our proposed approach achieves the state-of-the-art performance in semi-supervised domain adaptation.

The accurate and interpretable prediction of future events in time-series data often requires the capturing of representative patterns (or referred to as states) underpinning the observed data. To this end, most existing studies focus on the representation and recognition of states, but ignore the changing transitional relations among them. In this paper, we present evolutionary state graph, a dynamic graph structure designed to systematically represent the evolving relations (edges) among states (nodes) along time. We conduct analysis on the dynamic graphs constructed from the time-series data and show that changes on the graph structures (e.g., edges connecting certain state nodes) can inform the occurrences of events (i.e., time-series fluctuation). Inspired by this, we propose a novel graph neural network model, Evolutionary State Graph Network (EvoNet), to encode the evolutionary state graph for accurate and interpretable time-series event prediction. Specifically, Evolutionary State Graph Network models both the node-level (state-to-state) and graph-level (segment-to-segment) propagation, and captures the node-graph (state-to-segment) interactions over time. Experimental results based on five real-world datasets show that our approach not only achieves clear improvements compared with 11 baselines, but also provides more insights towards explaining the results of event predictions.

北京阿比特科技有限公司