亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We consider the problem of estimating expectations with respect to a target distribution with an unknown normalizing constant, and where even the unnormalized target needs to be approximated at finite resolution. This setting is ubiquitous across science and engineering applications, for example in the context of Bayesian inference where a physics-based model governed by an intractable partial differential equation (PDE) appears in the likelihood. A multi-index Sequential Monte Carlo (MISMC) method is used to construct ratio estimators which provably enjoy the complexity improvements of multi-index Monte Carlo (MIMC) as well as the efficiency of Sequential Monte Carlo (SMC) for inference. In particular, the proposed method provably achieves the canonical complexity of MSE$^{-1}$, while single level methods require MSE$^{-\xi}$ for $\xi>1$. This is illustrated on examples of Bayesian inverse problems with an elliptic PDE forward model in $1$ and $2$ spatial dimensions, where $\xi=5/4$ and $\xi=3/2$, respectively. It is also illustrated on a more challenging log Gaussian process models, where single level complexity is approximately $\xi=9/4$ and multilevel Monte Carlo (or MIMC with an inappropriate index set) gives $\xi = 5/4 + \omega$, for any $\omega > 0$, whereas our method is again canonical.

相關內容

Inverse problems are in many cases solved with optimization techniques. When the underlying model is linear, first-order gradient methods are usually sufficient. With nonlinear models, due to nonconvexity, one must often resort to second-order methods that are computationally more expensive. In this work we aim to approximate a nonlinear model with a linear one and correct the resulting approximation error. We develop a sequential method that iteratively solves a linear inverse problem and updates the approximation error by evaluating it at the new solution. This treatment convexifies the problem and allows us to benefit from established convex optimization methods. We separately consider cases where the approximation is fixed over iterations and where the approximation is adaptive. In the fixed case we show theoretically under what assumptions the sequence converges. In the adaptive case, particularly considering the special case of approximation by first-order Taylor expansion, we show that with certain assumptions the sequence converges to a critical point of the original nonconvex functional. Furthermore, we show that with quadratic objective functions the sequence corresponds to the Gauss-Newton method. Finally, we showcase numerical results superior to the conventional model correction method. We also show, that a fixed approximation can provide competitive results with considerable computational speed-up.

Random smoothing data augmentation is a unique form of regularization that can prevent overfitting by introducing noise to the input data, encouraging the model to learn more generalized features. Despite its success in various applications, there has been a lack of systematic study on the regularization ability of random smoothing. In this paper, we aim to bridge this gap by presenting a framework for random smoothing regularization that can adaptively and effectively learn a wide range of ground truth functions belonging to the classical Sobolev spaces. Specifically, we investigate two underlying function spaces: the Sobolev space of low intrinsic dimension, which includes the Sobolev space in $D$-dimensional Euclidean space or low-dimensional sub-manifolds as special cases, and the mixed smooth Sobolev space with a tensor structure. By using random smoothing regularization as novel convolution-based smoothing kernels, we can attain optimal convergence rates in these cases using a kernel gradient descent algorithm, either with early stopping or weight decay. It is noteworthy that our estimator can adapt to the structural assumptions of the underlying data and avoid the curse of dimensionality. This is achieved through various choices of injected noise distributions such as Gaussian, Laplace, or general polynomial noises, allowing for broad adaptation to the aforementioned structural assumptions of the underlying data. The convergence rate depends only on the effective dimension, which may be significantly smaller than the actual data dimension. We conduct numerical experiments on simulated data to validate our theoretical results.

We consider the upper confidence bound strategy for Gaussian multi-armed bandits with known control horizon sizes $N$ and build its limiting description with a system of stochastic differential equations and ordinary differential equations. Rewards for the arms are assumed to have unknown expected values and known variances. A set of Monte-Carlo simulations was performed for the case of close distributions of rewards, when mean rewards differ by the magnitude of order $N^{-1/2}$, as it yields the highest normalized regret, to verify the validity of the obtained description. The minimal size of the control horizon when the normalized regret is not noticeably larger than maximum possible was estimated.

In this paper I propose a concept of a correct loss function in a generative model of supervised learning for an input space $\mathcal{X}$ and a label space $\mathcal{Y}$, which are measurable spaces. A correct loss function in a generative model of supervised learning must correctly measure the discrepancy between elements of a hypothesis space $\mathcal{H}$ of possible predictors and the supervisor operator, which may not belong to $\mathcal{H}$. To define correct loss functions, I propose a characterization of a regular conditional probability measure $\mu_{\mathcal{Y}|\mathcal{X}}$ for a probability measure $\mu$ on $\mathcal{X} \times \mathcal{Y}$ relative to the projection $\Pi_{\mathcal{X}}: \mathcal{X}\times\mathcal{Y}\to \mathcal{X}$ as a solution of a linear operator equation. If $\mathcal{Y}$ is a separable metrizable topological space with the Borel $\sigma$-algebra $ \mathcal{B} (\mathcal{Y})$, I propose another characterization of a regular conditional probability measure $\mu_{\mathcal{Y}|\mathcal{X}}$ as a minimizer of a mean square error on the space of Markov kernels, called probabilistic morphisms, from $\mathcal{X}$ to $\mathcal{Y}$, using kernel mean embedding. Using these results and using inner measure to quantify generalizability of a learning algorithm, I give a generalization of a result due to Cucker-Smale, which concerns the learnability of a regression model, to a setting of a conditional probability estimation problem. I also give a variant of Vapnik's method of solving stochastic ill-posed problem, using inner measure and discuss its applications.

Income inequality estimators are biased in small samples, leading generally to an underestimation. This aspect deserves particular attention when estimating inequality in small domains and performing small area estimation at the area level. We propose a bias correction framework for a large class of inequality measures comprising the Gini Index, the Generalized Entropy and the Atkinson index families by accounting for complex survey designs. The proposed methodology does not require any parametric assumption on income distribution, being very flexible. Design-based performance evaluation of our proposal has been carried out using EU-SILC data, their results show a noticeable bias reduction for all the measures. Lastly, an illustrative example of application in small area estimation confirms that ignoring ex-ante bias correction determines model misspecification.

This paper studies the stochastic optimization for decentralized nonconvex-strongly-concave minimax problem. We propose a simple and efficient algorithm, called Decentralized Recursive-gradient descEnt Ascent Method (\texttt{DREAM}), which achieves the best-known theoretical guarantee for finding the $\epsilon$-stationary point of the primal function. For the online setting, the proposed method requires $\mathcal{O}(\kappa^3\epsilon^{-3})$ stochastic first-order oracle (SFO) calls and $\mathcal{O}\big(\kappa^2\epsilon^{-2}/\sqrt{1-\lambda_2(W)}\,\big)$ communication rounds to find an $\epsilon$-stationary point, where $\kappa$ is the condition number and $\lambda_2(W)$ is the second-largest eigenvalue of the gossip matrix~$W$. For the offline setting with totally $N$ component functions, the proposed method requires $\mathcal{O}\big(\kappa^2 \sqrt{N} \epsilon^{-2}\big)$ SFO calls and the same communication complexity as the online setting.

Given $\mathbf A \in \mathbb{R}^{n \times n}$ with entries bounded in magnitude by $1$, it is well-known that if $S \subset [n] \times [n]$ is a uniformly random subset of $\tilde{O} (n/\epsilon^2)$ entries, and if ${\mathbf A}_S$ equals $\mathbf A$ on the entries in $S$ and is zero elsewhere, then $\|\mathbf A - \frac{n^2}{s} \cdot {\mathbf A}_S\|_2 \le \epsilon n$ with high probability, where $\|\cdot\|_2$ is the spectral norm. We show that for positive semidefinite (PSD) matrices, no randomness is needed at all in this statement. Namely, there exists a fixed subset $S$ of $\tilde{O} (n/\epsilon^2)$ entries that acts as a universal sparsifier: the above error bound holds simultaneously for every bounded entry PSD matrix $\mathbf A \in \mathbb{R}^{n \times n}$. One can view this result as a significant extension of a Ramanujan expander graph, which sparsifies any bounded entry PSD matrix, not just the all ones matrix. We leverage the existence of such universal sparsifiers to give the first deterministic algorithms for several central problems related to singular value computation that run in faster than matrix multiplication time. We also prove universal sparsification bounds for non-PSD matrices, showing that $\tilde{O} (n/\epsilon^4)$ entries suffices to achieve error $\epsilon \cdot \max(n,\|\mathbf A\|_1)$, where $\|\mathbf A\|_1$ is the trace norm. We prove that this is optimal up to an $\tilde{O} (1/\epsilon^2)$ factor. Finally, we give an improved deterministic spectral approximation algorithm for PSD $\mathbf A$ with entries lying in $\{-1,0,1\}$, which we show is nearly information-theoretically optimal.

Minimum flow decomposition (MFD) is the NP-hard problem of finding a smallest decomposition of a network flow/circulation $X$ on a directed graph $G$ into weighted source-to-sink paths whose superposition equals $X$. We show that, for acyclic graphs, considering the \emph{width} of the graph (the minimum number of paths needed to cover all of its edges) yields advances in our understanding of its approximability. For the version of the problem that uses only non-negative weights, we identify and characterise a new class of \emph{width-stable} graphs, for which a popular heuristic is a \gwsimple-approximation ($|X|$ being the total flow of $X$), and strengthen its worst-case approximation ratio from $\Omega(\sqrt{m})$ to $\Omega(m / \log m)$ for sparse graphs, where $m$ is the number of edges in the graph. We also study a new problem on graphs with cycles, Minimum Cost Circulation Decomposition (MCCD), and show that it generalises MFD through a simple reduction. For the version allowing also negative weights, we give a $(\lceil \log \Vert X \Vert \rceil +1)$-approximation ($\Vert X \Vert$ being the maximum absolute value of $X$ on any edge) using a power-of-two approach, combined with parity fixing arguments and a decomposition of unitary circulations ($\Vert X \Vert \leq 1$), using a generalised notion of width for this problem. Finally, we disprove a conjecture about the linear independence of minimum (non-negative) flow decompositions posed by Kloster et al. [ALENEX 2018], but show that its useful implication (polynomial-time assignments of weights to a given set of paths to decompose a flow) holds for the negative version.

We consider $t$-Lee-error-correcting codes of length $n$ over the residue ring $\mathbb{Z}_m := \mathbb{Z}/m\mathbb{Z}$ and determine upper and lower bounds on the number of $t$-Lee-error-correcting codes. We use two different methods, namely estimating isolated nodes on bipartite graphs and the graph container method. The former gives density results for codes of fixed size and the latter for any size. This confirms some recent density results for linear Lee metric codes and provides new density results for nonlinear codes. To apply a variant of the graph container algorithm we also investigate some geometrical properties of the balls in the Lee metric.

Non-convex optimization is ubiquitous in modern machine learning. Researchers devise non-convex objective functions and optimize them using off-the-shelf optimizers such as stochastic gradient descent and its variants, which leverage the local geometry and update iteratively. Even though solving non-convex functions is NP-hard in the worst case, the optimization quality in practice is often not an issue -- optimizers are largely believed to find approximate global minima. Researchers hypothesize a unified explanation for this intriguing phenomenon: most of the local minima of the practically-used objectives are approximately global minima. We rigorously formalize it for concrete instances of machine learning problems.

北京阿比特科技有限公司