Hypergraphs are a powerful abstraction for modeling high-order relations, which are ubiquitous in many fields. A hypergraph consists of nodes and hyperedges (i.e., subsets of nodes); and there have been a number of attempts to extend the notion of $k$-cores, which proved useful with numerous applications for pairwise graphs, to hypergraphs. However, the previous extensions are based on an unrealistic assumption that hyperedges are fragile, i.e., a high-order relation becomes obsolete as soon as a single member leaves it. In this work, we propose a new substructure model, called ($k$, $t$)-hypercore, based on the assumption that high-order relations remain as long as at least $t$ fraction of the members remain. Specifically, it is defined as the maximal subhypergraph where (1) every node is contained in at least $k$ hyperedges in it and (2) at least $t$ fraction of the nodes remain in every hyperedge. We first prove that, given $t$ (or $k$), finding the ($k$, $t$)-hypercore for every possible $k$ (or $t$) can be computed in time linear w.r.t the sum of the sizes of hyperedges. Then, we demonstrate that real-world hypergraphs from the same domain share similar ($k$, $t$)-hypercore structures, which capture different perspectives depending on $t$. Lastly, we show the successful applications of our model in identifying influential nodes, dense substructures, and vulnerability in hypergraphs.
While multilinear algebra appears natural for studying the multiway interactions modeled by hypergraphs, tensor methods for general hypergraphs have been stymied by theoretical and practical barriers. A recently proposed adjacency tensor is applicable to nonuniform hypergraphs, but is prohibitively costly to form and analyze in practice. We develop tensor times same vector (TTSV) algorithms for this tensor which improve complexity from $O(n^r)$ to a low-degree polynomial in $r$, where $n$ is the number of vertices and $r$ is the maximum hyperedge size. Our algorithms are implicit, avoiding formation of the order $r$ adjacency tensor. We demonstrate the flexibility and utility of our approach in practice by developing tensor-based hypergraph centrality and clustering algorithms. We also show these tensor measures offer complementary information to analogous graph-reduction approaches on data, and are also able to detect higher-order structure that many existing matrix-based approaches provably cannot.
Hypernetworks, neural networks that predict the parameters of another neural network, are powerful models that have been successfully used in diverse applications from image generation to multi-task learning. Unfortunately, existing hypernetworks are often challenging to train. Training typically converges far more slowly than for non-hypernetwork models, and the rate of convergence can be very sensitive to hyperparameter choices. In this work, we identify a fundamental and previously unidentified problem that contributes to the challenge of training hypernetworks: a magnitude proportionality between the inputs and outputs of the hypernetwork. We demonstrate both analytically and empirically that this can lead to unstable optimization, thereby slowing down convergence, and sometimes even preventing any learning. We present a simple solution to this problem using a revised hypernetwork formulation that we call Magnitude Invariant Parametrizations (MIP). We demonstrate the proposed solution on several hypernetwork tasks, where it consistently stabilizes training and achieves faster convergence. Furthermore, we perform a comprehensive ablation study including choices of activation function, normalization strategies, input dimensionality, and hypernetwork architecture; and find that MIP improves training in all scenarios. We provide easy-to-use code that can turn existing networks into MIP-based hypernetworks.
The core numbers of vertices in a graph are one of the most well-studied cohesive subgraph models because of the linear running time. In practice, many data graphs are dynamic graphs that are continuously changing by inserting or removing edges. The core numbers are updated in dynamic graphs with edge insertions and deletions, which is called core maintenance. When a burst of a large number of inserted or removed edges come in, we have to handle these edges on time to keep up with the data stream. There are two main sequential algorithms for core maintenance, \textsc{Traversal} and \textsc{Order}. It is proved that the \textsc{Order} algorithm significantly outperforms the \alg{Traversal} algorithm over all tested graphs with up to 2,083 times speedups. To the best of our knowledge, all existing parallel approaches are based on the \alg{Traversal} algorithm; also, their parallelism exists only for affected vertices with different core numbers, which will reduce to sequential when all vertices have the same core numbers. In this paper, we propose a new parallel core maintenance algorithm based on the \alg{Order} algorithm. Importantly, our new approach always has parallelism, even for the graphs where all vertices have the same core numbers. Extensive experiments are conducted over real-world, temporal, and synthetic graphs on a 64-core machine. The results show that for inserting and removing 100,000 edges using 16-worker, our method achieves up to 289x and 10x times speedups compared with the most efficient existing method, respectively.
In this paper, we study the maximum clique problem on hyperbolic random graphs. A hyperbolic random graph is a mathematical model for analyzing scale-free networks since it effectively explains the power-law degree distribution of scale-free networks. We propose a simple algorithm for finding a maximum clique in hyperbolic random graph. We first analyze the running time of our algorithm theoretically. We can compute a maximum clique on a hyperbolic random graph $G$ in $O(m + n^{4.5(1-\alpha)})$ expected time if a geometric representation is given or in $O(m + n^{6(1-\alpha)})$ expected time if a geometric representation is not given, where $n$ and $m$ denote the numbers of vertices and edges of $G$, respectively, and $\alpha$ denotes a parameter controlling the power-law exponent of the degree distribution of $G$. Also, we implemented and evaluated our algorithm empirically. Our algorithm outperforms the previous algorithm [BFK18] practically and theoretically. Beyond the hyperbolic random graphs, we have experiment on real-world networks. For most of instances, we get large cliques close to the optimum solutions efficiently.
We propose a causal framework for decomposing a group disparity in an outcome in terms of an intermediate treatment variable. Our framework captures the contributions of group differences in baseline potential outcome, treatment prevalence, average treatment effect, and selection into treatment. This framework is counterfactually formulated and readily informs policy interventions. The decomposition component for differential selection into treatment is particularly novel, revealing a new mechanism for explaining and ameliorating disparities. This framework reformulates the classic Kitagawa-Blinder-Oaxaca decomposition in causal terms, supplements causal mediation analysis by explaining group disparities instead of group effects, and resolves conceptual difficulties of recent random equalization decompositions. We also provide a conditional decomposition that allows researchers to incorporate covariates in defining the estimands and corresponding interventions. We develop nonparametric estimators based on efficient influence functions of the decompositions. We show that, under mild conditions, these estimators are $\sqrt{n}$-consistent, asymptotically normal, semiparametrically efficient, and doubly robust. We apply our framework to study the causal role of education in intergenerational income persistence. We find that both differential prevalence of and differential selection into college graduation significantly contribute to the disparity in income attainment between income origin groups.
Graph neural networks generalize conventional neural networks to graph-structured data and have received widespread attention due to their impressive representation ability. In spite of the remarkable achievements, the performance of Euclidean models in graph-related learning is still bounded and limited by the representation ability of Euclidean geometry, especially for datasets with highly non-Euclidean latent anatomy. Recently, hyperbolic space has gained increasing popularity in processing graph data with tree-like structure and power-law distribution, owing to its exponential growth property. In this survey, we comprehensively revisit the technical details of the current hyperbolic graph neural networks, unifying them into a general framework and summarizing the variants of each component. More importantly, we present various HGNN-related applications. Last, we also identify several challenges, which potentially serve as guidelines for further flourishing the achievements of graph learning in hyperbolic spaces.
This book develops an effective theory approach to understanding deep neural networks of practical relevance. Beginning from a first-principles component-level picture of networks, we explain how to determine an accurate description of the output of trained networks by solving layer-to-layer iteration equations and nonlinear learning dynamics. A main result is that the predictions of networks are described by nearly-Gaussian distributions, with the depth-to-width aspect ratio of the network controlling the deviations from the infinite-width Gaussian description. We explain how these effectively-deep networks learn nontrivial representations from training and more broadly analyze the mechanism of representation learning for nonlinear models. From a nearly-kernel-methods perspective, we find that the dependence of such models' predictions on the underlying learning algorithm can be expressed in a simple and universal way. To obtain these results, we develop the notion of representation group flow (RG flow) to characterize the propagation of signals through the network. By tuning networks to criticality, we give a practical solution to the exploding and vanishing gradient problem. We further explain how RG flow leads to near-universal behavior and lets us categorize networks built from different activation functions into universality classes. Altogether, we show that the depth-to-width ratio governs the effective model complexity of the ensemble of trained networks. By using information-theoretic techniques, we estimate the optimal aspect ratio at which we expect the network to be practically most useful and show how residual connections can be used to push this scale to arbitrary depths. With these tools, we can learn in detail about the inductive bias of architectures, hyperparameters, and optimizers.
Graph Neural Networks (GNNs), which generalize deep neural networks to graph-structured data, have drawn considerable attention and achieved state-of-the-art performance in numerous graph related tasks. However, existing GNN models mainly focus on designing graph convolution operations. The graph pooling (or downsampling) operations, that play an important role in learning hierarchical representations, are usually overlooked. In this paper, we propose a novel graph pooling operator, called Hierarchical Graph Pooling with Structure Learning (HGP-SL), which can be integrated into various graph neural network architectures. HGP-SL incorporates graph pooling and structure learning into a unified module to generate hierarchical representations of graphs. More specifically, the graph pooling operation adaptively selects a subset of nodes to form an induced subgraph for the subsequent layers. To preserve the integrity of graph's topological information, we further introduce a structure learning mechanism to learn a refined graph structure for the pooled graph at each layer. By combining HGP-SL operator with graph neural networks, we perform graph level representation learning with focus on graph classification task. Experimental results on six widely used benchmarks demonstrate the effectiveness of our proposed model.
In many real-world network datasets such as co-authorship, co-citation, email communication, etc., relationships are complex and go beyond pairwise. Hypergraphs provide a flexible and natural modeling tool to model such complex relationships. The obvious existence of such complex relationships in many real-world networks naturaly motivates the problem of learning with hypergraphs. A popular learning paradigm is hypergraph-based semi-supervised learning (SSL) where the goal is to assign labels to initially unlabeled vertices in a hypergraph. Motivated by the fact that a graph convolutional network (GCN) has been effective for graph-based SSL, we propose HyperGCN, a novel GCN for SSL on attributed hypergraphs. Additionally, we show how HyperGCN can be used as a learning-based approach for combinatorial optimisation on NP-hard hypergraph problems. We demonstrate HyperGCN's effectiveness through detailed experimentation on real-world hypergraphs.
Graph-based semi-supervised learning (SSL) is an important learning problem where the goal is to assign labels to initially unlabeled nodes in a graph. Graph Convolutional Networks (GCNs) have recently been shown to be effective for graph-based SSL problems. GCNs inherently assume existence of pairwise relationships in the graph-structured data. However, in many real-world problems, relationships go beyond pairwise connections and hence are more complex. Hypergraphs provide a natural modeling tool to capture such complex relationships. In this work, we explore the use of GCNs for hypergraph-based SSL. In particular, we propose HyperGCN, an SSL method which uses a layer-wise propagation rule for convolutional neural networks operating directly on hypergraphs. To the best of our knowledge, this is the first principled adaptation of GCNs to hypergraphs. HyperGCN is able to encode both the hypergraph structure and hypernode features in an effective manner. Through detailed experimentation, we demonstrate HyperGCN's effectiveness at hypergraph-based SSL.