亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper presents Slime, a novel non-deep image matching framework which models the scene as rough local overlapping planes. This intermediate representation sits in-between the local affine approximation of the keypoint patches and the global matching based on both spatial and similarity constraints, providing a progressive pruning of the correspondences, as planes are easier to handle with respect to general scenes. Slime decomposes the images into overlapping regions at different scales and computes loose planar homographies. Planes are mutually extended by compatible matches and the images are split into fixed tiles, with only the best homographies retained for each pair of tiles. Stable matches are identified according to the consensus of the admissible stereo configurations provided by pairwise homographies. Within tiles, the rough planes are then merged according to their overlap in terms of matches and further consistent correspondences are extracted. The whole process only involves homography constraints. As a result, both the coverage and the stability of correct matches over the scene are amplified, together with the ability to spot matches in challenging scenes, allowing traditional hybrid matching pipelines to make up lost ground against recent end-to-end deep matching methods. In addition, the paper gives a thorough comparative analysis of recent state-of-the-art in image matching represented by end-to-end deep networks and hybrid pipelines. The evaluation considers both planar and non-planar scenes, taking into account critical and challenging scenarios including abrupt temporal image changes and strong variations in relative image rotations. According to this analysis, although the impressive progress done in this field, there is still a wide room for improvements to be investigated in future research.

相關內容

Neural additive models (NAMs) enhance the transparency of deep neural networks by handling input features in separate additive sub-networks. However, they lack inherent mechanisms that provide calibrated uncertainties and enable selection of relevant features and interactions. Approaching NAMs from a Bayesian perspective, we augment them in three primary ways, namely by a) providing credible intervals for the individual additive sub-networks; b) estimating the marginal likelihood to perform an implicit selection of features via an empirical Bayes procedure; and c) facilitating the ranking of feature pairs as candidates for second-order interaction in fine-tuned models. In particular, we develop Laplace-approximated NAMs (LA-NAMs), which show improved empirical performance on tabular datasets and challenging real-world medical tasks.

The inadequate mixing of conventional Markov Chain Monte Carlo (MCMC) methods for multi-modal distributions presents a significant challenge in practical applications such as Bayesian inference and molecular dynamics. Addressing this, we propose Diffusive Gibbs Sampling (DiGS), an innovative family of sampling methods designed for effective sampling from distributions characterized by distant and disconnected modes. DiGS integrates recent developments in diffusion models, leveraging Gaussian convolution to create an auxiliary noisy distribution that bridges isolated modes in the original space and applying Gibbs sampling to alternately draw samples from both spaces. Our approach exhibits a better mixing property for sampling multi-modal distributions than state-of-the-art methods such as parallel tempering. We demonstrate that our sampler attains substantially improved results across various tasks, including mixtures of Gaussians, Bayesian neural networks and molecular dynamics.

Estimating the parameters of a probabilistic directed graphical model from incomplete data remains a long-standing challenge. This is because, in the presence of latent variables, both the likelihood function and posterior distribution are intractable without further assumptions about structural dependencies or model classes. While existing learning methods are fundamentally based on likelihood maximization, here we offer a new view of the parameter learning problem through the lens of optimal transport. This perspective licenses a general framework that operates on any directed graphs without making unrealistic assumptions on the posterior over the latent variables or resorting to black-box variational approximations. We develop a theoretical framework and support it with extensive empirical evidence demonstrating the flexibility and versatility of our approach. Across experiments, we show that not only can our method recover the ground-truth parameters but it also performs comparably or better on downstream applications, notably the non-trivial task of discrete representation learning.

Polycube layouts for 3D models effectively support a wide variety of methods such as hex-mesh construction, seamless texture mapping, spline fitting, and multi-block grid generation. Our study of polycube layouts is motivated by conformal mesh generation for aerospace modelling. In this setting, quality and correctness guarantees are of the utmost importance. However, currently the fully automatic construction of valid polycube layouts still poses significant challenges: state-of-the-art methods are generally not guaranteed to return a proper solution, even after post-processing, or they use a prohibitively large number of voxels that add detail indiscriminately. In this paper we present a robust, flexible, and efficient method to generate polycube layouts. Our approach is based on a dual representation for polycube layouts and builds a layout by iteratively adding dual loops. Our construction is robust by design: at any iterative step we maintain a valid polycube layout. We offer the flexibility of manual intervention if the user so desires: while our method is able to compute a complete polycube layout without user intervention, the user can interrupt after each iteration and target further refinement on both the local and the global level. Last but not least, our method is efficient and can be implemented using comparatively simple algorithmic building blocks. Our implementation is publicly available and we present its output for numerous benchmark models.

This work considers the non-interactive source simulation problem (NISS). In the standard NISS scenario, a pair of distributed agents, Alice and Bob, observe a distributed binary memoryless source $(X^d,Y^d)$ generated based on joint distribution $P_{X,Y}$. The agents wish to produce a pair of discrete random variables $(U_d,V_d)$ with joint distribution $P_{U_d,V_d}$, such that $P_{U_d,V_d}$ converges in total variation distance to a target distribution $Q_{U,V}$. Two variations of the standard NISS scenario are considered. In the first variation, in addition to $(X^d,Y^d)$ the agents have access to a shared Bell state. The agents each measure their respective state, using a measurement of their choice, and use its classical output along with $(X^d,Y^d)$ to simulate the target distribution. This scenario is called the entanglement-assisted NISS (EA-NISS). In the second variation, the agents have access to a classical common random bit $Z$, in addition to $(X^d,Y^d)$. This scenario is called the classical common randomness NISS (CR-NISS). It is shown that for binary-output NISS scenarios, the set of feasible distributions for EA-NISS and CR-NISS are equal with each other. Hence, there is not quantum advantage in these EA-NISS scenarios. For non-binary output NISS scenarios, it is shown through an example that there are distributions that are feasible in EA-NISS but not in CR-NISS. This shows that there is a quantum advantage in non-binary output EA-NISS.

The aim of this work is to develop a fully-distributed algorithmic framework for training graph convolutional networks (GCNs). The proposed method is able to exploit the meaningful relational structure of the input data, which are collected by a set of agents that communicate over a sparse network topology. After formulating the centralized GCN training problem, we first show how to make inference in a distributed scenario where the underlying data graph is split among different agents. Then, we propose a distributed gradient descent procedure to solve the GCN training problem. The resulting model distributes computation along three lines: during inference, during back-propagation, and during optimization. Convergence to stationary solutions of the GCN training problem is also established under mild conditions. Finally, we propose an optimization criterion to design the communication topology between agents in order to match with the graph describing data relationships. A wide set of numerical results validate our proposal. To the best of our knowledge, this is the first work combining graph convolutional neural networks with distributed optimization.

Knowledge graph (KG) embedding encodes the entities and relations from a KG into low-dimensional vector spaces to support various applications such as KG completion, question answering, and recommender systems. In real world, knowledge graphs (KGs) are dynamic and evolve over time with addition or deletion of triples. However, most existing models focus on embedding static KGs while neglecting dynamics. To adapt to the changes in a KG, these models need to be re-trained on the whole KG with a high time cost. In this paper, to tackle the aforementioned problem, we propose a new context-aware Dynamic Knowledge Graph Embedding (DKGE) method which supports the embedding learning in an online fashion. DKGE introduces two different representations (i.e., knowledge embedding and contextual element embedding) for each entity and each relation, in the joint modeling of entities and relations as well as their contexts, by employing two attentive graph convolutional networks, a gate strategy, and translation operations. This effectively helps limit the impacts of a KG update in certain regions, not in the entire graph, so that DKGE can rapidly acquire the updated KG embedding by a proposed online learning algorithm. Furthermore, DKGE can also learn KG embedding from scratch. Experiments on the tasks of link prediction and question answering in a dynamic environment demonstrate the effectiveness and efficiency of DKGE.

We present SlowFast networks for video recognition. Our model involves (i) a Slow pathway, operating at low frame rate, to capture spatial semantics, and (ii) a Fast pathway, operating at high frame rate, to capture motion at fine temporal resolution. The Fast pathway can be made very lightweight by reducing its channel capacity, yet can learn useful temporal information for video recognition. Our models achieve strong performance for both action classification and detection in video, and large improvements are pin-pointed as contributions by our SlowFast concept. We report 79.0% accuracy on the Kinetics dataset without using any pre-training, largely surpassing the previous best results of this kind. On AVA action detection we achieve a new state-of-the-art of 28.3 mAP. Code will be made publicly available.

We investigate a lattice-structured LSTM model for Chinese NER, which encodes a sequence of input characters as well as all potential words that match a lexicon. Compared with character-based methods, our model explicitly leverages word and word sequence information. Compared with word-based methods, lattice LSTM does not suffer from segmentation errors. Gated recurrent cells allow our model to choose the most relevant characters and words from a sentence for better NER results. Experiments on various datasets show that lattice LSTM outperforms both word-based and character-based LSTM baselines, achieving the best results.

Learning similarity functions between image pairs with deep neural networks yields highly correlated activations of embeddings. In this work, we show how to improve the robustness of such embeddings by exploiting the independence within ensembles. To this end, we divide the last embedding layer of a deep network into an embedding ensemble and formulate training this ensemble as an online gradient boosting problem. Each learner receives a reweighted training sample from the previous learners. Further, we propose two loss functions which increase the diversity in our ensemble. These loss functions can be applied either for weight initialization or during training. Together, our contributions leverage large embedding sizes more effectively by significantly reducing correlation of the embedding and consequently increase retrieval accuracy of the embedding. Our method works with any differentiable loss function and does not introduce any additional parameters during test time. We evaluate our metric learning method on image retrieval tasks and show that it improves over state-of-the-art methods on the CUB 200-2011, Cars-196, Stanford Online Products, In-Shop Clothes Retrieval and VehicleID datasets.

北京阿比特科技有限公司