Self-testing is a method to certify quantum states and measurements in a device-independent way. The device-independent certification of quantum properties is purely based on input-output measurement statistics of the involved devices with minimal knowledge about their internal workings. Bipartite pure entangled states can be self-tested, but, in the case of multipartite pure entangled states, the answer is not so straightforward. Nevertheless, \v{S}upi\'{c} et al. recently introduced a novel self-testing method for any pure entangled quantum state, which leverages network assistance and relies on bipartite entangled measurements. Hence, their scheme loses the true device-independent flavor of self-testing. In this regard, we provide a self-testing scheme for genuine multipartite pure entangle states in the true sense by employing a generalized Hardy-type non-local argument. Our scheme involves only local operations and classical communications and does not depend on bipartite entangled measurements and is free from any network assistance. In addition, we provide the device-independent bound of the maximum probability of success for generalized Hardy-type nonlocality argument.
We propose a new concept of lifts of reversible diffusion processes and show that various well-known non-reversible Markov processes arising in applications are lifts in this sense of simple reversible diffusions. Furthermore, we introduce a concept of non-asymptotic relaxation times and show that these can at most be reduced by a square root through lifting, generalising a related result in discrete time. Finally, we demonstrate how the recently developed approach to quantitative hypocoercivity based on space-time Poincar\'e inequalities can be rephrased and simplified in the language of lifts and how it can be applied to find optimal lifts.
The minimum covariance determinant (MCD) estimator is a popular method for robustly estimating the mean and covariance of multivariate data. We extend the MCD to the setting where the observations are matrices rather than vectors and introduce the matrix minimum covariance determinant (MMCD) estimators for robust parameter estimation. These estimators hold equivariance properties, achieve a high breakdown point, and are consistent under elliptical matrix-variate distributions. We have also developed an efficient algorithm with convergence guarantees to compute the MMCD estimators. Using the MMCD estimators, we can compute robust Mahalanobis distances that can be used for outlier detection. Those distances can be decomposed into outlyingness contributions from each cell, row, or column of a matrix-variate observation using Shapley values, a concept for outlier explanation recently introduced in the multivariate setting. Simulations and examples reveal the excellent properties and usefulness of the robust estimators.
Necessary and sufficient conditions of uniform consistency are explored. A hypothesis is simple. Nonparametric sets of alternatives are bounded convex sets in $\mathbb{L}_p$, $p >1$ with "small" balls deleted. The "small" balls have the center at the point of hypothesis and radii of balls tend to zero as sample size increases. For problem of hypothesis testing on a density, we show that, for the sets of alternatives, there are uniformly consistent tests for some sequence of radii of the balls, if and only if, convex set is relatively compact. The results are established for problem of hypothesis testing on a density, for signal detection in Gaussian white noise, for linear ill-posed problems with random Gaussian noise and so on.
A component-splitting method is proposed to improve convergence characteristics for implicit time integration of compressible multicomponent reactive flows. The characteristic decomposition of flux jacobian of multicomponent Navier-Stokes equations yields a large sparse eigensystem, presenting challenges of slow convergence and high computational costs for implicit methods. To addresses this issue, the component-splitting method segregates the implicit operator into two parts: one for the flow equations (density/momentum/energy) and the other for the component equations. Each part's implicit operator employs flux-vector splitting based on their respective spectral radii to achieve accelerated convergence. This approach improves the computational efficiency of implicit iteration, mitigating the quadratic increase in time cost with the number of species. Two consistence corrections are developed to reduce the introduced component-splitting error and ensure the numerical consistency of mass fraction. Importantly, the impact of component-splitting method on accuracy is minimal as the residual approaches convergence. The accuracy, efficiency, and robustness of component-splitting method are thoroughly investigated and compared with the coupled implicit scheme through several numerical cases involving thermo-chemical nonequilibrium hypersonic flows. The results demonstrate that the component-splitting method decreases the required number of iteration steps for convergence of residual and wall heat flux, decreases the computation time per iteration step, and diminishes the residual to lower magnitude. The acceleration efficiency is enhanced with increases in CFL number and number of species.
Consider minimizing the entropy of a mixture of states by choosing each state subject to constraints. If the spectrum of each state is fixed, we expect that in order to reduce the entropy of the mixture, we should make the states less distinguishable in some sense. Here, we study a class of optimization problems that are inspired by this situation and shed light on the relevant notions of distinguishability. The motivation for our study is the recently introduced spin alignment conjecture. In the original version of the underlying problem, each state in the mixture is constrained to be a freely chosen state on a subset of $n$ qubits tensored with a fixed state $Q$ on each of the qubits in the complement. According to the conjecture, the entropy of the mixture is minimized by choosing the freely chosen state in each term to be a tensor product of projectors onto a fixed maximal eigenvector of $Q$, which maximally "aligns" the terms in the mixture. We generalize this problem in several ways. First, instead of minimizing entropy, we consider maximizing arbitrary unitarily invariant convex functions such as Fan norms and Schatten norms. To formalize and generalize the conjectured required alignment, we define alignment as a preorder on tuples of self-adjoint operators that is induced by majorization. We prove the generalized conjecture for Schatten norms of integer order, for the case where the freely chosen states are constrained to be classical, and for the case where only two states contribute to the mixture and $Q$ is proportional to a projector. The last case fits into a more general situation where we give explicit conditions for maximal alignment. The spin alignment problem has a natural "dual" formulation, versions of which have further generalizations that we introduce.
As the development of formal proofs is a time-consuming task, it is important to devise ways of sharing the already written proofs to prevent wasting time redoing them. One of the challenges in this domain is to translate proofs written in proof assistants based on impredicative logics to proof assistants based on predicative logics, whenever impredicativity is not used in an essential way. In this paper we present a transformation for sharing proofs with a core predicative system supporting prenex universe polymorphism (like in Agda). It consists in trying to elaborate each term into a predicative universe polymorphic term as general as possible. The use of universe polymorphism is justified by the fact that mapping each universe to a fixed one in the target theory is not sufficient in most cases. During the elaboration, we need to solve unification problems in the equational theory of universe levels. In order to do this, we give a complete characterization of when a single equation admits a most general unifier. This characterization is then employed in a partial algorithm which uses a constraint-postponement strategy for trying to solve unification problems. The proposed translation is of course partial, but in practice allows one to translate many proofs that do not use impredicativity in an essential way. Indeed, it was implemented in the tool Predicativize and then used to translate semi-automatically many non-trivial developments from Matita's library to Agda, including proofs of Bertrand's Postulate and Fermat's Little Theorem, which (as far as we know) were not available in Agda yet.
It is well known that Newton's method, especially when applied to large problems such as the discretization of nonlinear partial differential equations (PDEs), can have trouble converging if the initial guess is too far from the solution. This work focuses on accelerating this convergence, in the context of the discretization of nonlinear elliptic PDEs. We first provide a quick review of existing methods, and justify our choice of learning an initial guess with a Fourier neural operator (FNO). This choice was motivated by the mesh-independence of such operators, whose training and evaluation can be performed on grids with different resolutions. The FNO is trained using a loss minimization over generated data, loss functions based on the PDE discretization. Numerical results, in one and two dimensions, show that the proposed initial guess accelerates the convergence of Newton's method by a large margin compared to a naive initial guess, especially for highly nonlinear or anisotropic problems.
One way to make decisions under uncertainty is to select an optimal option from a possible range of options, by maximizing the expected utilities derived from a probability model. However, under severe uncertainty, identifying precise probabilities is hard. For this reason, imprecise probability models uncertainty through convex sets of probabilities, and considers decision rules that can return multiple options to reflect insufficient information. Many well-founded decision rules have been studied in the past, but none of those standard rules are able to control the number of returned alternatives. This can be a problem for large decision problems, due to the cognitive burden decision makers have to face when presented with a large number of alternatives. Our contribution proposes regret-based ideas to construct new decision rules which return a bounded number of options, where the limit on the number of options is set in advance by the decision maker as an expression of their cognitive limitation. We also study their consistency and numerical behaviour.
We prove that QMA where the verifier may also make a single non-collapsing measurement is equal to NEXP, resolving an open question of Aaronson. We show this is a corollary to a modified proof of QMA+ = NEXP [arXiv:2306.13247]. At the core of many results inspired by Blier and Tapp [arXiv:0709.0738] is an unphysical property testing problem deciding whether a quantum state is close to an element of a fixed basis.
Covariate adjustment can improve precision in analyzing randomized experiments. With fully observed data, regression adjustment and propensity score weighting are asymptotically equivalent in improving efficiency over unadjusted analysis. When some outcomes are missing, we consider combining these two adjustment methods with inverse probability of observation weighting for handling missing outcomes, and show that the equivalence between the two methods breaks down. Regression adjustment no longer ensures efficiency gain over unadjusted analysis unless the true outcome model is linear in covariates or the outcomes are missing completely at random. Propensity score weighting, in contrast, still guarantees efficiency over unadjusted analysis, and including more covariates in adjustment never harms asymptotic efficiency. Moreover, we establish the value of using partially observed covariates to secure additional efficiency by the missingness indicator method, which imputes all missing covariates by zero and uses the union of the completed covariates and corresponding missingness indicators as the new, fully observed covariates. Based on these findings, we recommend using regression adjustment in combination with the missingness indicator method if the linear outcome model or missing complete at random assumption is plausible and using propensity score weighting with the missingness indicator method otherwise.