亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We study and introduce new gradient operators in the complex and bicomplex settings, inspired from the well-known Least Mean Square (LMS) algorithm invented in 1960 by Widrow and Hoff for Adaptive Linear Neuron (ADALINE). These gradient operators will be used to formulate new learning rules for the Bicomplex Least Mean Square (BLMS) algorithms and we will also formulate these learning rules will for the case of multicomplex LMS algorithms (MLMS). This approach extends both the classical real and complex LMS algorithms.

相關內容

Goemans and Williamson designed a 0.878-approximation algorithm for Max-Cut in undirected graphs [JACM'95]. Khot, Kindler, Mosel, and O'Donnel showed that the approximation ratio of the Goemans-Williamson algorithm is optimal assuming Khot's Unique Games Conjecture [SICOMP'07]. In the problem of maximum cuts in directed graphs (Max-DiCut), in which we seek as many edges going from one particular side of the cut to the other, the situation is more complicated but the recent work of Brakensiek, Huang, Potechin, and Zwick showed that their 0.874-approximation algorithm is tight under the Unique Games Conjecture (up to a small delta)[FOCS'23]. We consider a promise version of the problem and design an SDP-based algorithm which, if given a directed graph G that has a directed cut of value rho, finds an undirected cut in G (ignoring edge directions) with value at least \rho.

We propose a hybrid iterative method based on MIONet for PDEs, which combines the traditional numerical iterative solver and the recent powerful machine learning method of neural operator, and further systematically analyze its theoretical properties, including the convergence condition, the spectral behavior, as well as the convergence rate, in terms of the errors of the discretization and the model inference. We show the theoretical results for the frequently-used smoothers, i.e. Richardson (damped Jacobi) and Gauss-Seidel. We give an upper bound of the convergence rate of the hybrid method w.r.t. the model correction period, which indicates a minimum point to make the hybrid iteration converge fastest. Several numerical examples including the hybrid Richardson (Gauss-Seidel) iteration for the 1-d (2-d) Poisson equation are presented to verify our theoretical results, and also reflect an excellent acceleration effect. As a meshless acceleration method, it is provided with enormous potentials for practice applications.

We consider the task of constructing confidence intervals with differential privacy. We propose two private variants of the non-parametric bootstrap, which privately compute the median of the results of multiple ``little'' bootstraps run on partitions of the data and give asymptotic bounds on the coverage error of the resulting confidence intervals. For a fixed differential privacy parameter $\epsilon$, our methods enjoy the same error rates as that of the non-private bootstrap to within logarithmic factors in the sample size $n$. We empirically validate the performance of our methods for mean estimation, median estimation, and logistic regression with both real and synthetic data. Our methods achieve similar coverage accuracy to existing methods (and non-private baselines) while providing notably shorter ($\gtrsim 10$ times) confidence intervals than previous approaches.

We propose a new method called the Metropolis-adjusted Mirror Langevin algorithm for approximate sampling from distributions whose support is a compact and convex set. This algorithm adds an accept-reject filter to the Markov chain induced by a single step of the Mirror Langevin algorithm (Zhang et al., 2020), which is a basic discretisation of the Mirror Langevin dynamics. Due to the inclusion of this filter, our method is unbiased relative to the target, while known discretisations of the Mirror Langevin dynamics including the Mirror Langevin algorithm have an asymptotic bias. For this algorithm, we also give upper bounds for the number of iterations taken to mix to a constrained distribution whose potential is relatively smooth, convex, and Lipschitz continuous with respect to a self-concordant mirror function. As a consequence of the reversibility of the Markov chain induced by the inclusion of the Metropolis-Hastings filter, we obtain an exponentially better dependence on the error tolerance for approximate constrained sampling. We also present numerical experiments that corroborate our theoretical findings.

We introduce FaBERT, a Persian BERT-base model pre-trained on the HmBlogs corpus, encompassing both informal and formal Persian texts. FaBERT is designed to excel in traditional Natural Language Understanding (NLU) tasks, addressing the intricacies of diverse sentence structures and linguistic styles prevalent in the Persian language. In our comprehensive evaluation of FaBERT on 12 datasets in various downstream tasks, encompassing Sentiment Analysis (SA), Named Entity Recognition (NER), Natural Language Inference (NLI), Question Answering (QA), and Question Paraphrasing (QP), it consistently demonstrated improved performance, all achieved within a compact model size. The findings highlight the importance of utilizing diverse and cleaned corpora, such as HmBlogs, to enhance the performance of language models like BERT in Persian Natural Language Processing (NLP) applications. FaBERT is openly accessible at //huggingface.co/sbunlp/fabert

An important aim of this paper is to convey some basics of mathematical logic to the legal community working with Artificial Intelligence. After analysing what AI is, we decide to delimit ourselves to rule-based AI leaving Neural Networks and Machine Learning aside. Rule based AI allows for Formal methods which are described in a rudimentary form. We will then see how mathematical logic interacts with legal rule-based AI practice. We shall see how mathematical logic imposes limitations and complications to AI applications. We classify the limitations and interactions between mathematical logic and legal AI in three categories: logical, computational and mathematical. The examples to showcase the interactions will largely come from European traffic regulations. The paper closes off with some reflections on how and where AI could be used and on basic mechanisms that shape society.

Pareto Set Learning (PSL) is a promising approach for approximating the entire Pareto front in multi-objective optimization (MOO) problems. However, existing derivative-free PSL methods are often unstable and inefficient, especially for expensive black-box MOO problems where objective function evaluations are costly. In this work, we propose to address the instability and inefficiency of existing PSL methods with a novel controllable PSL method, called Co-PSL. Particularly, Co-PSL consists of two stages: (1) warm-starting Bayesian optimization to obtain quality Gaussian Processes priors and (2) controllable Pareto set learning to accurately acquire a parametric mapping from preferences to the corresponding Pareto solutions. The former is to help stabilize the PSL process and reduce the number of expensive function evaluations. The latter is to support real-time trade-off control between conflicting objectives. Performances across synthesis and real-world MOO problems showcase the effectiveness of our Co-PSL for expensive multi-objective optimization tasks.

We show that Edge Multiway Cut (also called Multiterminal Cut) and Node Multiway Cut are NP-complete on graphs of maximum degree $3$ (also known as subcubic graphs). This improves on a previous degree bound of $11$. Our NP-completeness result holds even for subcubic graphs that are planar.

We show that the Rademacher complexity-based approach can generate non-vacuous generalisation bounds on Convolutional Neural Networks (CNNs) for classifying a small number of classes of images. The development of new Talagrand's contraction lemmas for high-dimensional mappings between function spaces and CNNs for general Lipschitz activation functions is a key technical contribution. Our results show that the Rademacher complexity does not depend on the network length for CNNs with some special types of activation functions such as ReLU, Leaky ReLU, Parametric Rectifier Linear Unit, Sigmoid, and Tanh.

We propose a generalization of nonlinear stability of numerical one-step integrators to Riemannian manifolds in the spirit of Butcher's notion of B-stability. Taking inspiration from Simpson-Porco and Bullo, we introduce non-expansive systems on such manifolds and define B-stability of integrators. In this first exposition, we provide concrete results for a geodesic version of the Implicit Euler (GIE) scheme. We prove that the GIE method is B-stable on Riemannian manifolds with non-positive sectional curvature. We show through numerical examples that the GIE method is expansive when applied to a certain non-expansive vector field on the 2-sphere, and that the GIE method does not necessarily possess a unique solution for large enough step sizes. Finally, we derive a new improved global error estimate for general Lie group integrators.

北京阿比特科技有限公司