亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Numerous methods have been developed to monitor the spread of negativity in modern years by eliminating vulgar, offensive, and fierce comments from social media platforms. However, there are relatively lesser amounts of study that converges on embracing positivity, reinforcing supportive and reassuring content in online forums. Consequently, we propose creating an English-Kannada Hope speech dataset, KanHope and comparing several experiments to benchmark the dataset. The dataset consists of 6,176 user-generated comments in code mixed Kannada scraped from YouTube and manually annotated as bearing hope speech or Not-hope speech. In addition, we introduce DC-BERT4HOPE, a dual-channel model that uses the English translation of KanHope for additional training to promote hope speech detection. The approach achieves a weighted F1-score of 0.756, bettering other models. Henceforth, KanHope aims to instigate research in Kannada while broadly promoting researchers to take a pragmatic approach towards online content that encourages, positive, and supportive.

相關內容

數據集,又稱為資料集、數據集合或資料集合,是一種由數據所組成的集合。
Data set(或dataset)是一個數據的集合,通常以表格形式出現。每一列代表一個特定變量。每一行都對應于某一成員的數據集的問題。它列出的價值觀為每一個變量,如身高和體重的一個物體或價值的隨機數。每個數值被稱為數據資料。對應于行數,該數據集的數據可能包括一個或多個成員。

We propose an approach for cognitive coding of speech by unsupervised extraction of contextual representations in two hierarchical levels of abstraction. Speech attributes such as phoneme identity that last one hundred milliseconds or less are captured in the lower level of abstraction, while speech attributes such as speaker identity and emotion that persist up to one second are captured in the higher level of abstraction. This decomposition is achieved by a two-stage neural network, with a lower and an upper stage operating at different time scales. Both stages are trained to predict the content of the signal in their respective latent spaces. A top-down pathway between stages further improves the predictive capability of the network. With an application in speech compression in mind, we investigate the effect of dimensionality reduction and low bitrate quantization on the extracted representations. The performance measured on the LibriSpeech and EmoV-DB datasets reaches, and for some speech attributes even exceeds, that of state-of-the-art approaches.

Language Identification (LID), a recommended initial step to Automatic Speech Recognition (ASR), is used to detect a spoken language from audio specimens. In state-of-the-art systems capable of multilingual speech processing, however, users have to explicitly set one or more languages before using them. LID, therefore, plays a very important role in situations where ASR based systems cannot parse the uttered language in multilingual contexts causing failure in speech recognition. We propose an attention based convolutional recurrent neural network (CRNN with Attention) that works on Mel-frequency Cepstral Coefficient (MFCC) features of audio specimens. Additionally, we reproduce some state-of-the-art approaches, namely Convolutional Neural Network (CNN) and Convolutional Recurrent Neural Network (CRNN), and compare them to our proposed method. We performed extensive evaluation on thirteen different Indian languages and our model achieves classification accuracy over 98%. Our LID model is robust to noise and provides 91.2% accuracy in a noisy scenario. The proposed model is easily extensible to new languages.

Detection and recognition of text in natural images are two main problems in the field of computer vision that have a wide variety of applications in analysis of sports videos, autonomous driving, industrial automation, to name a few. They face common challenging problems that are factors in how text is represented and affected by several environmental conditions. The current state-of-the-art scene text detection and/or recognition methods have exploited the witnessed advancement in deep learning architectures and reported a superior accuracy on benchmark datasets when tackling multi-resolution and multi-oriented text. However, there are still several remaining challenges affecting text in the wild images that cause existing methods to underperform due to there models are not able to generalize to unseen data and the insufficient labeled data. Thus, unlike previous surveys in this field, the objectives of this survey are as follows: first, offering the reader not only a review on the recent advancement in scene text detection and recognition, but also presenting the results of conducting extensive experiments using a unified evaluation framework that assesses pre-trained models of the selected methods on challenging cases, and applies the same evaluation criteria on these techniques. Second, identifying several existing challenges for detecting or recognizing text in the wild images, namely, in-plane-rotation, multi-oriented and multi-resolution text, perspective distortion, illumination reflection, partial occlusion, complex fonts, and special characters. Finally, the paper also presents insight into the potential research directions in this field to address some of the mentioned challenges that are still encountering scene text detection and recognition techniques.

Breast cancer remains a global challenge, causing over 1 million deaths globally in 2018. To achieve earlier breast cancer detection, screening x-ray mammography is recommended by health organizations worldwide and has been estimated to decrease breast cancer mortality by 20-40%. Nevertheless, significant false positive and false negative rates, as well as high interpretation costs, leave opportunities for improving quality and access. To address these limitations, there has been much recent interest in applying deep learning to mammography; however, obtaining large amounts of annotated data poses a challenge for training deep learning models for this purpose, as does ensuring generalization beyond the populations represented in the training dataset. Here, we present an annotation-efficient deep learning approach that 1) achieves state-of-the-art performance in mammogram classification, 2) successfully extends to digital breast tomosynthesis (DBT; "3D mammography"), 3) detects cancers in clinically-negative prior mammograms of cancer patients, 4) generalizes well to a population with low screening rates, and 5) outperforms five-out-of-five full-time breast imaging specialists by improving absolute sensitivity by an average of 14%. Our results demonstrate promise towards software that can improve the accuracy of and access to screening mammography worldwide.

End-to-end approaches have drawn much attention recently for significantly simplifying the construction of an automatic speech recognition (ASR) system. RNN transducer (RNN-T) is one of the popular end-to-end methods. Previous studies have shown that RNN-T is difficult to train and a very complex training process is needed for a reasonable performance. In this paper, we explore RNN-T for a Chinese large vocabulary continuous speech recognition (LVCSR) task and aim to simplify the training process while maintaining performance. First, a new strategy of learning rate decay is proposed to accelerate the model convergence. Second, we find that adding convolutional layers at the beginning of the network and using ordered data can discard the pre-training process of the encoder without loss of performance. Besides, we design experiments to find a balance among the usage of GPU memory, training circle and model performance. Finally, we achieve 16.9% character error rate (CER) on our test set which is 2% absolute improvement from a strong BLSTM CE system with language model trained on the same text corpus.

Highlight detection has the potential to significantly ease video browsing, but existing methods often suffer from expensive supervision requirements, where human viewers must manually identify highlights in training videos. We propose a scalable unsupervised solution that exploits video duration as an implicit supervision signal. Our key insight is that video segments from shorter user-generated videos are more likely to be highlights than those from longer videos, since users tend to be more selective about the content when capturing shorter videos. Leveraging this insight, we introduce a novel ranking framework that prefers segments from shorter videos, while properly accounting for the inherent noise in the (unlabeled) training data. We use it to train a highlight detector with 10M hashtagged Instagram videos. In experiments on two challenging public video highlight detection benchmarks, our method substantially improves the state-of-the-art for unsupervised highlight detection.

We propose a method for the weakly supervised detection of objects in paintings. At training time, only image-level annotations are needed. This, combined with the efficiency of our multiple-instance learning method, enables one to learn new classes on-the-fly from globally annotated databases, avoiding the tedious task of manually marking objects. We show on several databases that dropping the instance-level annotations only yields mild performance losses. We also introduce a new database, IconArt, on which we perform detection experiments on classes that could not be learned on photographs, such as Jesus Child or Saint Sebastian. To the best of our knowledge, these are the first experiments dealing with the automatic (and in our case weakly supervised) detection of iconographic elements in paintings. We believe that such a method is of great benefit for helping art historians to explore large digital databases.

Can we detect common objects in a variety of image domains without instance-level annotations? In this paper, we present a framework for a novel task, cross-domain weakly supervised object detection, which addresses this question. For this paper, we have access to images with instance-level annotations in a source domain (e.g., natural image) and images with image-level annotations in a target domain (e.g., watercolor). In addition, the classes to be detected in the target domain are all or a subset of those in the source domain. Starting from a fully supervised object detector, which is pre-trained on the source domain, we propose a two-step progressive domain adaptation technique by fine-tuning the detector on two types of artificially and automatically generated samples. We test our methods on our newly collected datasets containing three image domains, and achieve an improvement of approximately 5 to 20 percentage points in terms of mean average precision (mAP) compared to the best-performing baselines.

Transfer learning has revolutionized computer vision, but existing approaches in NLP still require task-specific modifications and training from scratch. We propose Fine-tuned Language Models (FitLaM), an effective transfer learning method that can be applied to any task in NLP, and introduce techniques that are key for fine-tuning a state-of-the-art language model. Our method significantly outperforms the state-of-the-art on five text classification tasks, reducing the error by 18-24% on the majority of datasets. We open-source our pretrained models and code to enable adoption by the community.

Reasoning about the relationships between object pairs in images is a crucial task for holistic scene understanding. Most of the existing works treat this task as a pure visual classification task: each type of relationship or phrase is classified as a relation category based on the extracted visual features. However, each kind of relationships has a wide variety of object combination and each pair of objects has diverse interactions. Obtaining sufficient training samples for all possible relationship categories is difficult and expensive. In this work, we propose a natural language guided framework to tackle this problem. We propose to use a generic bi-directional recurrent neural network to predict the semantic connection between the participating objects in the relationship from the aspect of natural language. The proposed simple method achieves the state-of-the-art on the Visual Relationship Detection (VRD) and Visual Genome datasets, especially when predicting unseen relationships (e.g. recall improved from 76.42% to 89.79% on VRD zero-shot testing set).

北京阿比特科技有限公司