亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

We present a fully polynomial-time approximation scheme (FPTAS) for computing equilibria in congestion games, under smoothed running-time analysis. More precisely, we prove that if the resource costs of a congestion game are randomly perturbed by independent noises, whose density is at most $\phi$, then any sequence of $(1+\varepsilon)$-improving dynamics will reach an $(1+\varepsilon)$-approximate pure Nash equilibrium (PNE) after an expected number of steps which is strongly polynomial in $\frac{1}{\varepsilon}$, $\phi$, and the size of the game's description. Our results establish a sharp contrast to the traditional worst-case analysis setting, where it is known that better-response dynamics take exponentially long to converge to $\alpha$-approximate PNE, for any constant factor $\alpha\geq 1$. As a matter of fact, computing $\alpha$-approximate PNE in congestion games is PLS-hard. We demonstrate how our analysis can be applied to various different models of congestion games including general, step-function, and polynomial cost, as well as fair cost-sharing games (where the resource costs are decreasing). It is important to note that our bounds do not depend explicitly on the cardinality of the players' strategy sets, and thus the smoothed FPTAS is readily applicable to network congestion games as well.

相關內容

We propose Flexible Vertical Federated Learning (Flex-VFL), a distributed machine algorithm that trains a smooth, non-convex function in a distributed system with vertically partitioned data. We consider a system with several parties that wish to collaboratively learn a global function. Each party holds a local dataset; the datasets have different features but share the same sample ID space. The parties are heterogeneous in nature: the parties' operating speeds, local model architectures, and optimizers may be different from one another and, further, they may change over time. To train a global model in such a system, Flex-VFL utilizes a form of parallel block coordinate descent, where parties train a partition of the global model via stochastic coordinate descent. We provide theoretical convergence analysis for Flex-VFL and show that the convergence rate is constrained by the party speeds and local optimizer parameters. We apply this analysis and extend our algorithm to adapt party learning rates in response to changing speeds and local optimizer parameters. Finally, we compare the convergence time of Flex-VFL against synchronous and asynchronous VFL algorithms, as well as illustrate the effectiveness of our adaptive extension.

Automated Machine Learning (AutoML) is an area of research that focuses on developing methods to generate machine learning models automatically. The idea of being able to build machine learning models with very little human intervention represents a great opportunity for the practice of applied machine learning. However, there is very little information on how to design an AutoML system in practice. Most of the research focuses on the problems facing optimization algorithms and leaves out the details of how that would be done in practice. In this paper, we propose a frame of reference for building general AutoML systems. Through a narrative review of the main approaches in the area, our main idea is to distill the fundamental concepts in order to support them in a single design. Finally, we discuss some open problems related to the application of AutoML for future research.

Modular reduction is a crucial operation in many post-quantum cryptographic schemes, including the Kyber key exchange method or Dilithium signature scheme. However, it can be computationally expensive and pose a performance bottleneck in hardware implementations. To address this issue, we propose a novel approach for computing modular reduction efficiently in hardware for arbitrary static moduli. Unlike other commonly used methods such as Barrett or Montgomery reduction, the method does not require any multiplications. It is not dependent on properties of any particular choice of modulus for good performance and low area consumption. Its major strength lies in its low area consumption, which was reduced by 60% for optimized and up to 90% for generic Barrett implementations for Kyber and Dilithium. Additionally, it is well suited for parallelization and pipelining and scales linearly in hardware resource consumption with increasing operation width. All operations can be performed in the bit-width of the modulus, rather than the size of the number being reduced. This shortens carry chains and allows for faster clocking. Moreover, our method can be executed in constant time, which is essential for cryptography applications where timing attacks can be used to obtain information about the secret key.

Emotion recognition in conversations is essential for ensuring advanced human-machine interactions. However, creating robust and accurate emotion recognition systems in real life is challenging, mainly due to the scarcity of emotion datasets collected in the wild and the inability to take into account the dialogue context. The CEMO dataset, composed of conversations between agents and patients during emergency calls to a French call center, fills this gap. The nature of these interactions highlights the role of the emotional flow of the conversation in predicting patient emotions, as context can often make a difference in understanding actual feelings. This paper presents a multi-scale conversational context learning approach for speech emotion recognition, which takes advantage of this hypothesis. We investigated this approach on both speech transcriptions and acoustic segments. Experimentally, our method uses the previous or next information of the targeted segment. In the text domain, we tested the context window using a wide range of tokens (from 10 to 100) and at the speech turns level, considering inputs from both the same and opposing speakers. According to our tests, the context derived from previous tokens has a more significant influence on accurate prediction than the following tokens. Furthermore, taking the last speech turn of the same speaker in the conversation seems useful. In the acoustic domain, we conducted an in-depth analysis of the impact of the surrounding emotions on the prediction. While multi-scale conversational context learning using Transformers can enhance performance in the textual modality for emergency call recordings, incorporating acoustic context is more challenging.

We investigate multi-agent reinforcement learning for stochastic games with complex tasks, where the reward functions are non-Markovian. We utilize reward machines to incorporate high-level knowledge of complex tasks. We develop an algorithm called Q-learning with reward machines for stochastic games (QRM-SG), to learn the best-response strategy at Nash equilibrium for each agent. In QRM-SG, we define the Q-function at a Nash equilibrium in augmented state space. The augmented state space integrates the state of the stochastic game and the state of reward machines. Each agent learns the Q-functions of all agents in the system. We prove that Q-functions learned in QRM-SG converge to the Q-functions at a Nash equilibrium if the stage game at each time step during learning has a global optimum point or a saddle point, and the agents update Q-functions based on the best-response strategy at this point. We use the Lemke-Howson method to derive the best-response strategy given current Q-functions. The three case studies show that QRM-SG can learn the best-response strategies effectively. QRM-SG learns the best-response strategies after around 7500 episodes in Case Study I, 1000 episodes in Case Study II, and 1500 episodes in Case Study III, while baseline methods such as Nash Q-learning and MADDPG fail to converge to the Nash equilibrium in all three case studies.

Gait recognition is to seek correct matches for query individuals by their unique walking patterns. However, current methods focus solely on extracting individual-specific features, overlooking inter-personal relationships. In this paper, we propose a novel $\textbf{Relation Descriptor}$ that captures not only individual features but also relations between test gaits and pre-selected anchored gaits. Specifically, we reinterpret classifier weights as anchored gaits and compute similarity scores between test features and these anchors, which re-expresses individual gait features into a similarity relation distribution. In essence, the relation descriptor offers a holistic perspective that leverages the collective knowledge stored within the classifier's weights, emphasizing meaningful patterns and enhancing robustness. Despite its potential, relation descriptor poses dimensionality challenges since its dimension depends on the training set's identity count. To address this, we propose the Farthest Anchored-gait Selection to identify the most discriminative anchored gaits and an Orthogonal Regularization to increase diversity within anchored gaits. Compared to individual-specific features extracted from the backbone, our relation descriptor can boost the performances nearly without any extra costs. We evaluate the effectiveness of our method on the popular GREW, Gait3D, CASIA-B, and OU-MVLP, showing that our method consistently outperforms the baselines and achieves state-of-the-art performances.

Group regression is commonly used in 3D object detection to predict box parameters of similar classes in a joint head, aiming to benefit from similarities while separating highly dissimilar classes. For query-based perception methods, this has, so far, not been feasible. We close this gap and present a method to incorporate multi-class group regression, especially designed for the 3D domain in the context of autonomous driving, into existing attention and query-based perception approaches. We enhance a transformer based joint object detection and tracking model with this approach, and thoroughly evaluate its behavior and performance. For group regression, the classes of the nuScenes dataset are divided into six groups of similar shape and prevalence, each being regressed by a dedicated head. We show that the proposed method is applicable to many existing transformer based perception approaches and can bring potential benefits. The behavior of query group regression is thoroughly analyzed in comparison to a unified regression head, e.g. in terms of class-switching behavior and distribution of the output parameters. The proposed method offers many possibilities for further research, such as in the direction of deep multi-hypotheses tracking.

Structural re-parameterization is a general training scheme for Convolutional Neural Networks (CNNs), which achieves performance improvement without increasing inference cost. As Vision Transformers (ViTs) are gradually surpassing CNNs in various visual tasks, one may question: if a training scheme specifically for ViTs exists that can also achieve performance improvement without increasing inference cost? Recently, Mixture-of-Experts (MoE) has attracted increasing attention, as it can efficiently scale up the capacity of Transformers at a fixed cost through sparsely activated experts. Considering that MoE can also be viewed as a multi-branch structure, can we utilize MoE to implement a ViT training scheme similar to structural re-parameterization? In this paper, we affirmatively answer these questions, with a new general training strategy for ViTs. Specifically, we decouple the training and inference phases of ViTs. During training, we replace some Feed-Forward Networks (FFNs) of the ViT with specially designed, more efficient MoEs that assign tokens to experts by random uniform partition, and perform Experts Weights Averaging (EWA) on these MoEs at the end of each iteration. After training, we convert each MoE into an FFN by averaging the experts, transforming the model back into original ViT for inference. We further provide a theoretical analysis to show why and how it works. Comprehensive experiments across various 2D and 3D visual tasks, ViT architectures, and datasets validate the effectiveness and generalizability of the proposed training scheme. Besides, our training scheme can also be applied to improve performance when fine-tuning ViTs. Lastly, but equally important, the proposed EWA technique can significantly improve the effectiveness of naive MoE in various 2D visual small datasets and 3D visual tasks.

Emotion recognition in conversation (ERC) aims to detect the emotion label for each utterance. Motivated by recent studies which have proven that feeding training examples in a meaningful order rather than considering them randomly can boost the performance of models, we propose an ERC-oriented hybrid curriculum learning framework. Our framework consists of two curricula: (1) conversation-level curriculum (CC); and (2) utterance-level curriculum (UC). In CC, we construct a difficulty measurer based on "emotion shift" frequency within a conversation, then the conversations are scheduled in an "easy to hard" schema according to the difficulty score returned by the difficulty measurer. For UC, it is implemented from an emotion-similarity perspective, which progressively strengthens the model's ability in identifying the confusing emotions. With the proposed model-agnostic hybrid curriculum learning strategy, we observe significant performance boosts over a wide range of existing ERC models and we are able to achieve new state-of-the-art results on four public ERC datasets.

Promoting behavioural diversity is critical for solving games with non-transitive dynamics where strategic cycles exist, and there is no consistent winner (e.g., Rock-Paper-Scissors). Yet, there is a lack of rigorous treatment for defining diversity and constructing diversity-aware learning dynamics. In this work, we offer a geometric interpretation of behavioural diversity in games and introduce a novel diversity metric based on \emph{determinantal point processes} (DPP). By incorporating the diversity metric into best-response dynamics, we develop \emph{diverse fictitious play} and \emph{diverse policy-space response oracle} for solving normal-form games and open-ended games. We prove the uniqueness of the diverse best response and the convergence of our algorithms on two-player games. Importantly, we show that maximising the DPP-based diversity metric guarantees to enlarge the \emph{gamescape} -- convex polytopes spanned by agents' mixtures of strategies. To validate our diversity-aware solvers, we test on tens of games that show strong non-transitivity. Results suggest that our methods achieve much lower exploitability than state-of-the-art solvers by finding effective and diverse strategies.

北京阿比特科技有限公司