亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Meeting the strict Quality of Service (QoS) requirements of terminals has imposed a signiffcant challenge on Multiaccess Edge Computing (MEC) systems, due to the limited multidimensional resources. To address this challenge, we propose a collaborative MEC framework that facilitates resource sharing between the edge servers, and with the aim to maximize the long-term QoS and reduce the cache switching cost through joint optimization of service caching, collaborative offfoading, and computation and communication resource allocation. The dual timescale feature and temporal recurrence relationship between service caching and other resource allocation make solving the problem even more challenging. To solve it, we propose a deep reinforcement learning (DRL)-based dual timescale scheme, called DGL-DDPG, which is composed of a short-term genetic algorithm (GA) and a long short-term memory network-based deep deterministic policy gradient (LSTM-DDPG). In doing so, we reformulate the optimization problem as a Markov decision process (MDP) where the small-timescale resource allocation decisions generated by an improved GA are taken as the states and input into a centralized LSTM-DDPG agent to generate the service caching decision for the large-timescale. Simulation results demonstrate that our proposed algorithm outperforms the baseline algorithms in terms of the average QoS and cache switching cost.

相關內容

For Prognostics and Health Management (PHM) of Lithium-ion (Li-ion) batteries, many models have been established to characterize their degradation process. The existing empirical or physical models can reveal important information regarding the degradation dynamics. However, there are no general and flexible methods to fuse the information represented by those models. Physics-Informed Neural Network (PINN) is an efficient tool to fuse empirical or physical dynamic models with data-driven models. To take full advantage of various information sources, we propose a model fusion scheme based on PINN. It is implemented by developing a semi-empirical semi-physical Partial Differential Equation (PDE) to model the degradation dynamics of Li-ion batteries. When there is little prior knowledge about the dynamics, we leverage the data-driven Deep Hidden Physics Model (DeepHPM) to discover the underlying governing dynamic models. The uncovered dynamics information is then fused with that mined by the surrogate neural network in the PINN framework. Moreover, an uncertainty-based adaptive weighting method is employed to balance the multiple learning tasks when training the PINN. The proposed methods are verified on a public dataset of Li-ion Phosphate (LFP)/graphite batteries.

Diffusion Probabilistic Models (DPMs) have achieved considerable success in generation tasks. As sampling from DPMs is equivalent to solving diffusion SDE or ODE which is time-consuming, numerous fast sampling methods built upon improved differential equation solvers are proposed. The majority of such techniques consider solving the diffusion ODE due to its superior efficiency. However, stochastic sampling could offer additional advantages in generating diverse and high-quality data. In this work, we engage in a comprehensive analysis of stochastic sampling from two aspects: variance-controlled diffusion SDE and linear multi-step SDE solver. Based on our analysis, we propose SA-Solver, which is an improved efficient stochastic Adams method for solving diffusion SDE to generate data with high quality. Our experiments show that SA-Solver achieves: 1) improved or comparable performance compared with the existing state-of-the-art sampling methods for few-step sampling; 2) SOTA FID scores on substantial benchmark datasets under a suitable number of function evaluations (NFEs).

This work studies the signal-to-interference-plus-noise-ratio (SINR) meta distribution for the uplink transmission of a Poisson network with Rayleigh fading by using the dominant interferer-based approximation. The proposed approach relies on computing the mix of exact and mean-field analysis of interference. In particular, it requires the distance distribution of the nearest interferer and the conditional average of the rest of the interference. Using the widely studied fractional path-loss inversion power control and modeling the spatial locations of base stations (BSs) by a Poisson point process (PPP), we obtain the meta distribution based on the proposed method and compare it with the traditional beta approximation, as well as the exact results obtained via Monte-Carlo simulations. Our numerical results validate that the proposed method shows good matching and is time competitive.

Recently Transformer and Convolution neural network (CNN) based models have shown promising results in EEG signal processing. Transformer models can capture the global dependencies in EEG signals through a self-attention mechanism, while CNN models can capture local features such as sawtooth waves. In this work, we propose an end-to-end neural epilepsy detection model, EENED, that combines CNN and Transformer. Specifically, by introducing the convolution module into the Transformer encoder, EENED can learn the time-dependent relationship of the patient's EEG signal features and notice local EEG abnormal mutations closely related to epilepsy, such as the appearance of spikes and the sprinkling of sharp and slow waves. Our proposed framework combines the ability of Transformer and CNN to capture different scale features of EEG signals and holds promise for improving the accuracy and reliability of epilepsy detection. Our source code will be released soon on GitHub.

Purpose: Multi-expert deep learning training methods to automatically quantify ischemic brain tissue on Non-Contrast CT Materials and Methods: The data set consisted of 260 Non-Contrast CTs from 233 patients of acute ischemic stroke patients recruited in the DEFUSE 3 trial. A benchmark U-Net was trained on the reference annotations of three experienced neuroradiologists to segment ischemic brain tissue using majority vote and random expert sampling training schemes. We used a one-sided Wilcoxon signed-rank test on a set of segmentation metrics to compare bootstrapped point estimates of the training schemes with the inter-expert agreement and ratio of variance for consistency analysis. We further compare volumes with the 24h-follow-up DWI (final infarct core) in the patient subgroup with full reperfusion and we test volumes for correlation to the clinical outcome (mRS after 30 and 90 days) with the Spearman method. Results: Random expert sampling leads to a model that shows better agreement with experts than experts agree among themselves and better agreement than the agreement between experts and a majority-vote model performance (Surface Dice at Tolerance 5mm improvement of 61% to 0.70 +- 0.03 and Dice improvement of 25% to 0.50 +- 0.04). The model-based predicted volume similarly estimated the final infarct volume and correlated better to the clinical outcome than CT perfusion. Conclusion: A model trained on random expert sampling can identify the presence and location of acute ischemic brain tissue on Non-Contrast CT similar to CT perfusion and with better consistency than experts. This may further secure the selection of patients eligible for endovascular treatment in less specialized hospitals.

Stance detection aims to identify the attitude expressed in a document towards a given target. Techniques such as Chain-of-Thought (CoT) prompting have advanced this task, enhancing a model's reasoning capabilities through the derivation of intermediate rationales. However, CoT relies primarily on a model's pre-trained internal knowledge during reasoning, thereby neglecting the valuable external information that is previously unknown to the model. This omission, especially within the unsupervised reasoning process, can affect the model's overall performance. Moreover, while CoT enhances Large Language Models (LLMs), smaller LMs, though efficient operationally, face challenges in delivering nuanced reasoning. In response to these identified gaps, we introduce the Ladder-of-Thought (LoT) for the stance detection task. Constructed through a dual-phase Progressive Optimization Framework, LoT directs the small LMs to assimilate high-quality external knowledge, refining the intermediate rationales produced. These bolstered rationales subsequently serve as the foundation for more precise predictions - akin to how a ladder facilitates reaching elevated goals. LoT achieves a balance between efficiency and performance. Our empirical evaluations underscore LoT's efficacy, marking a 16% improvement over GPT-3.5 and a 10% enhancement compared to GPT-3.5 with CoT on stance detection task.

We propose personalized Tucker decomposition (perTucker) to address the limitations of traditional tensor decomposition methods in capturing heterogeneity across different datasets. perTucker decomposes tensor data into shared global components and personalized local components. We introduce a mode orthogonality assumption and develop a proximal gradient regularized block coordinate descent algorithm that is guaranteed to converge to a stationary point. By learning unique and common representations across datasets, we demonstrate perTucker's effectiveness in anomaly detection, client classification, and clustering through a simulation study and two case studies on solar flare detection and tonnage signal classification.

The rapidly evolving field of Explainable Artificial Intelligence (XAI) has generated significant interest in developing methods to make AI systems more transparent and understandable. However, the problem of explainability cannot be exhaustively solved in the abstract, as there is no single approach that can be universally applied to generate adequate explanations for any given AI system, and this is especially true in the arts. In this position paper, we propose an Explanatory Pragmatism (EP) framework for XAI in music performance, emphasising the importance of context and audience in the development of explainability requirements. By tailoring explanations to specific audiences and continuously refining them based on feedback, EP offers a promising direction for enhancing the transparency and interpretability of AI systems in broad artistic applications and more specifically to music performance.

Pre-trained Language Models (PLMs) have achieved great success in various Natural Language Processing (NLP) tasks under the pre-training and fine-tuning paradigm. With large quantities of parameters, PLMs are computation-intensive and resource-hungry. Hence, model pruning has been introduced to compress large-scale PLMs. However, most prior approaches only consider task-specific knowledge towards downstream tasks, but ignore the essential task-agnostic knowledge during pruning, which may cause catastrophic forgetting problem and lead to poor generalization ability. To maintain both task-agnostic and task-specific knowledge in our pruned model, we propose ContrAstive Pruning (CAP) under the paradigm of pre-training and fine-tuning. It is designed as a general framework, compatible with both structured and unstructured pruning. Unified in contrastive learning, CAP enables the pruned model to learn from the pre-trained model for task-agnostic knowledge, and fine-tuned model for task-specific knowledge. Besides, to better retain the performance of the pruned model, the snapshots (i.e., the intermediate models at each pruning iteration) also serve as effective supervisions for pruning. Our extensive experiments show that adopting CAP consistently yields significant improvements, especially in extremely high sparsity scenarios. With only 3% model parameters reserved (i.e., 97% sparsity), CAP successfully achieves 99.2% and 96.3% of the original BERT performance in QQP and MNLI tasks. In addition, our probing experiments demonstrate that the model pruned by CAP tends to achieve better generalization ability.

Reasoning with knowledge expressed in natural language and Knowledge Bases (KBs) is a major challenge for Artificial Intelligence, with applications in machine reading, dialogue, and question answering. General neural architectures that jointly learn representations and transformations of text are very data-inefficient, and it is hard to analyse their reasoning process. These issues are addressed by end-to-end differentiable reasoning systems such as Neural Theorem Provers (NTPs), although they can only be used with small-scale symbolic KBs. In this paper we first propose Greedy NTPs (GNTPs), an extension to NTPs addressing their complexity and scalability limitations, thus making them applicable to real-world datasets. This result is achieved by dynamically constructing the computation graph of NTPs and including only the most promising proof paths during inference, thus obtaining orders of magnitude more efficient models. Then, we propose a novel approach for jointly reasoning over KBs and textual mentions, by embedding logic facts and natural language sentences in a shared embedding space. We show that GNTPs perform on par with NTPs at a fraction of their cost while achieving competitive link prediction results on large datasets, providing explanations for predictions, and inducing interpretable models. Source code, datasets, and supplementary material are available online at //github.com/uclnlp/gntp.

北京阿比特科技有限公司