Long-tailed recognition with imbalanced class distribution naturally emerges in practical machine learning applications. Existing methods such as data reweighing, resampling, and supervised contrastive learning enforce the class balance with a price of introducing imbalance between instances of head class and tail class, which may ignore the underlying rich semantic substructures of the former and exaggerate the biases in the latter. We overcome these drawbacks by a novel ``subclass-balancing contrastive learning (SBCL)'' approach that clusters each head class into multiple subclasses of similar sizes as the tail classes and enforce representations to capture the two-layer class hierarchy between the original classes and their subclasses. Since the clustering is conducted in the representation space and updated during the course of training, the subclass labels preserve the semantic substructures of head classes. Meanwhile, it does not overemphasize tail class samples, so each individual instance contribute to the representation learning equally. Hence, our method achieves both the instance- and subclass-balance, while the original class labels are also learned through contrastive learning among subclasses from different classes. We evaluate SBCL over a list of long-tailed benchmark datasets and it achieves the state-of-the-art performance. In addition, we present extensive analyses and ablation studies of SBCL to verify its advantages.
Many problems in science and engineering involve optimizing an expensive black-box function over a high-dimensional space. For such black-box optimization (BBO) problems, we typically assume a small budget for online function evaluations, but also often have access to a fixed, offline dataset for pretraining. Prior approaches seek to utilize the offline data to approximate the function or its inverse but are not sufficiently accurate far from the data distribution. We propose BONET, a generative framework for pretraining a novel black-box optimizer using offline datasets. In BONET, we train an autoregressive model on fixed-length trajectories derived from an offline dataset. We design a sampling strategy to synthesize trajectories from offline data using a simple heuristic of rolling out monotonic transitions from low-fidelity to high-fidelity samples. Empirically, we instantiate BONET using a causally masked Transformer and evaluate it on Design-Bench, where we rank the best on average, outperforming state-of-the-art baselines.
A large class of problems in the current era of quantum devices involve interfacing between the quantum and classical system. These include calibration procedures, characterization routines, and variational algorithms. The control in these routines iteratively switches between the classical and the quantum computer. This results in the repeated compilation of the program that runs on the quantum system, scaling directly with the number of circuits and iterations. The repeated compilation results in a significant overhead throughout the routine. In practice, the total runtime of the program (classical compilation plus quantum execution) has an additional cost proportional to the circuit count. At practical scales, this can dominate the round-trip CPU-QPU time, between 5% and 80%, depending on the proportion of quantum execution time. To avoid repeated device-level compilation, we identify that machine code can be parametrized corresponding to pulse/gate parameters which can be dynamically adjusted during execution. Therefore, we develop a device-level partial-compilation (DLPC) technique that reduces compilation overhead to nearly constant, by using cheap remote procedure calls (RPC) from the QPU control software to the CPU. We then demonstrate the performance speedup of this on optimal pulse calibration, system characterization using randomized benchmarking (RB), and variational algorithms. We execute this modified pipeline on real trapped-ion quantum computers and observe significant reductions in compilation time, as much as 2.7x speedup for small-scale VQE problems.
Confidential computing is becoming a key technology for isolating high-assurance applications from large amounts of untrusted code typical in modern systems. However, existing confidential computing technologies cannot secure the most critical applications, like systems controlling critical infrastructure, hardware security modules, or aircraft, because they lack formal verification needed for their certification. This paper tackles the above problem by introducing a canonical architecture for virtual machine (VM)-based confidential computing systems. It abstracts processor-specific components and identifies a minimal set of hardware primitives required by a trusted security monitor to enforce security guarantees. This paper makes a step towards formally modeling and proving the correctness of the security monitor. We present our methodology and demonstrate the proposed approach based on an example from our model and Rust implementation of the security monitor for RISC-V.
Transformer-based pre-trained models have emerged as the predominant solution for natural language processing (NLP). Fine-tuning such pre-trained models for downstream tasks often requires a considerable amount of labeled private data. In practice, private data is often distributed across heterogeneous mobile devices and may be prohibited from being uploaded. Moreover, well-curated labeled data is often scarce, presenting an additional challenge. To address these challenges, we first introduce a data generator for federated few-shot learning tasks, which encompasses the quantity and skewness of scarce labeled data in a realistic setting. Subsequently, we propose AUG-FedPrompt, a prompt-based federated learning system that exploits abundant unlabeled data for data augmentation. Our experiments indicate that AUG-FedPrompt can perform on par with full-set fine-tuning with a limited amount of labeled data. However, such competitive performance comes at a significant system cost.
Recently, methods for skeleton-based human activity recognition have been shown to be vulnerable to adversarial attacks. However, these attack methods require either the full knowledge of the victim (i.e. white-box attacks), access to training data (i.e. transfer-based attacks) or frequent model queries (i.e. black-box attacks). All their requirements are highly restrictive, raising the question of how detrimental the vulnerability is. In this paper, we show that the vulnerability indeed exists. To this end, we consider a new attack task: the attacker has no access to the victim model or the training data or labels, where we coin the term hard no-box attack. Specifically, we first learn a motion manifold where we define an adversarial loss to compute a new gradient for the attack, named skeleton-motion-informed (SMI) gradient. Our gradient contains information of the motion dynamics, which is different from existing gradient-based attack methods that compute the loss gradient assuming each dimension in the data is independent. The SMI gradient can augment many gradient-based attack methods, leading to a new family of no-box attack methods. Extensive evaluation and comparison show that our method imposes a real threat to existing classifiers. They also show that the SMI gradient improves the transferability and imperceptibility of adversarial samples in both no-box and transfer-based black-box settings.
Deep Operator Network (DeepONet), a recently introduced deep learning operator network, approximates linear and nonlinear solution operators by taking parametric functions (infinite-dimensional objects) as inputs and mapping them to solution functions in contrast to classical neural networks that need re-training for every new set of parametric inputs. In this work, we have extended the classical formulation of DeepONets by introducing sequential learning models like the gated recurrent unit (GRU) and long short-term memory (LSTM) in the branch network to allow for accurate predictions of the solution contour plots under parametric and time-dependent loading histories. Two example problems, one on transient heat transfer and the other on path-dependent plastic loading, were shown to demonstrate the capabilities of the new architectures compared to the benchmark DeepONet model with a feed-forward neural network (FNN) in the branch. Despite being more computationally expensive, the GRU- and LSTM-DeepONets lowered the prediction error by half (0.06\% vs. 0.12\%) compared to FNN-DeepONet in the heat transfer problem, and by 2.5 times (0.85\% vs. 3\%) in the plasticity problem. In all cases, the proposed DeepONets achieved a prediction $R^2$ value of above 0.995, indicating superior accuracy. Results show that once trained, the proposed DeepONets can accurately predict the final full-field solution over the entire domain and are at least two orders of magnitude faster than direct finite element simulations, rendering it an accurate and robust surrogate model for rapid preliminary evaluations.
The data-driven approach of supervised learning methods has limited applicability in solving dipole inversion in Quantitative Susceptibility Mapping (QSM) with varying scan parameters across different objects. To address this generalization issue in supervised QSM methods, we propose a novel training-free model-based unsupervised method called MoDIP (Model-based Deep Image Prior). MoDIP comprises a small, untrained network and a Data Fidelity Optimization (DFO) module. The network converges to an interim state, acting as an implicit prior for image regularization, while the optimization process enforces the physical model of QSM dipole inversion. Experimental results demonstrate MoDIP's excellent generalizability in solving QSM dipole inversion across different scan parameters. It exhibits robustness against pathological brain QSM, achieving over 32% accuracy improvement than supervised deep learning and traditional iterative methods. It is also 33% more computationally efficient and runs 4 times faster than conventional DIP-based approaches, enabling 3D high-resolution image reconstruction in under 4.5 minutes.
Conventional entity typing approaches are based on independent classification paradigms, which make them difficult to recognize inter-dependent, long-tailed and fine-grained entity types. In this paper, we argue that the implicitly entailed extrinsic and intrinsic dependencies between labels can provide critical knowledge to tackle the above challenges. To this end, we propose \emph{Label Reasoning Network(LRN)}, which sequentially reasons fine-grained entity labels by discovering and exploiting label dependencies knowledge entailed in the data. Specifically, LRN utilizes an auto-regressive network to conduct deductive reasoning and a bipartite attribute graph to conduct inductive reasoning between labels, which can effectively model, learn and reason complex label dependencies in a sequence-to-set, end-to-end manner. Experiments show that LRN achieves the state-of-the-art performance on standard ultra fine-grained entity typing benchmarks, and can also resolve the long tail label problem effectively.
Human-in-the-loop aims to train an accurate prediction model with minimum cost by integrating human knowledge and experience. Humans can provide training data for machine learning applications and directly accomplish some tasks that are hard for computers in the pipeline with the help of machine-based approaches. In this paper, we survey existing works on human-in-the-loop from a data perspective and classify them into three categories with a progressive relationship: (1) the work of improving model performance from data processing, (2) the work of improving model performance through interventional model training, and (3) the design of the system independent human-in-the-loop. Using the above categorization, we summarize major approaches in the field, along with their technical strengths/ weaknesses, we have simple classification and discussion in natural language processing, computer vision, and others. Besides, we provide some open challenges and opportunities. This survey intends to provide a high-level summarization for human-in-the-loop and motivates interested readers to consider approaches for designing effective human-in-the-loop solutions.
Most deep learning-based models for speech enhancement have mainly focused on estimating the magnitude of spectrogram while reusing the phase from noisy speech for reconstruction. This is due to the difficulty of estimating the phase of clean speech. To improve speech enhancement performance, we tackle the phase estimation problem in three ways. First, we propose Deep Complex U-Net, an advanced U-Net structured model incorporating well-defined complex-valued building blocks to deal with complex-valued spectrograms. Second, we propose a polar coordinate-wise complex-valued masking method to reflect the distribution of complex ideal ratio masks. Third, we define a novel loss function, weighted source-to-distortion ratio (wSDR) loss, which is designed to directly correlate with a quantitative evaluation measure. Our model was evaluated on a mixture of the Voice Bank corpus and DEMAND database, which has been widely used by many deep learning models for speech enhancement. Ablation experiments were conducted on the mixed dataset showing that all three proposed approaches are empirically valid. Experimental results show that the proposed method achieves state-of-the-art performance in all metrics, outperforming previous approaches by a large margin.