亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Lying on the heart of intelligent decision-making systems, how policy is represented and optimized is a fundamental problem. The root challenge in this problem is the large scale and the high complexity of policy space, which exacerbates the difficulty of policy learning especially in real-world scenarios. Towards a desirable surrogate policy space, recently policy representation in a low-dimensional latent space has shown its potential in improving both the evaluation and optimization of policy. The key question involved in these studies is by what criterion we should abstract the policy space for desired compression and generalization. However, both the theory on policy abstraction and the methodology on policy representation learning are less studied in the literature. In this work, we make very first efforts to fill up the vacancy. First, we propose a unified policy abstraction theory, containing three types of policy abstraction associated to policy features at different levels. Then, we generalize them to three policy metrics that quantify the distance (i.e., similarity) of policies, for more convenient use in learning policy representation. Further, we propose a policy representation learning approach based on deep metric learning. For the empirical study, we investigate the efficacy of the proposed policy metrics and representations, in characterizing policy difference and conveying policy generalization respectively. Our experiments are conducted in both policy optimization and evaluation problems, containing trust-region policy optimization (TRPO), diversity-guided evolution strategy (DGES) and off-policy evaluation (OPE). Somewhat naturally, the experimental results indicate that there is no a universally optimal abstraction for all downstream learning problems; while the influence-irrelevance policy abstraction can be a generally preferred choice.

相關內容

Sparse decision trees are one of the most common forms of interpretable models. While recent advances have produced algorithms that fully optimize sparse decision trees for prediction, that work does not address policy design, because the algorithms cannot handle weighted data samples. Specifically, they rely on the discreteness of the loss function, which means that real-valued weights cannot be directly used. For example, none of the existing techniques produce policies that incorporate inverse propensity weighting on individual data points. We present three algorithms for efficient sparse weighted decision tree optimization. The first approach directly optimizes the weighted loss function; however, it tends to be computationally inefficient for large datasets. Our second approach, which scales more efficiently, transforms weights to integer values and uses data duplication to transform the weighted decision tree optimization problem into an unweighted (but larger) counterpart. Our third algorithm, which scales to much larger datasets, uses a randomized procedure that samples each data point with a probability proportional to its weight. We present theoretical bounds on the error of the two fast methods and show experimentally that these methods can be two orders of magnitude faster than the direct optimization of the weighted loss, without losing significant accuracy.

We consider novelty detection in time series with unknown and nonparametric probability structures. A deep learning approach is proposed to causally extract an innovations sequence consisting of novelty samples statistically independent of all past samples of the time series. A novelty detection algorithm is developed for the online detection of novel changes in the probability structure in the innovations sequence. A minimax optimality under a Bayes risk measure is established for the proposed novelty detection method, and its robustness and efficacy are demonstrated in experiments using real and synthetic datasets.

Markov decision processes (MDPs) are formal models commonly used in sequential decision-making. MDPs capture the stochasticity that may arise, for instance, from imprecise actuators via probabilities in the transition function. However, in data-driven applications, deriving precise probabilities from (limited) data introduces statistical errors that may lead to unexpected or undesirable outcomes. Uncertain MDPs (uMDPs) do not require precise probabilities but instead use so-called uncertainty sets in the transitions, accounting for such limited data. Tools from the formal verification community efficiently compute robust policies that provably adhere to formal specifications, like safety constraints, under the worst-case instance in the uncertainty set. We continuously learn the transition probabilities of an MDP in a robust anytime-learning approach that combines a dedicated Bayesian inference scheme with the computation of robust policies. In particular, our method (1) approximates probabilities as intervals, (2) adapts to new data that may be inconsistent with an intermediate model, and (3) may be stopped at any time to compute a robust policy on the uMDP that faithfully captures the data so far. Furthermore, our method is capable of adapting to changes in the environment. We show the effectiveness of our approach and compare it to robust policies computed on uMDPs learned by the UCRL2 reinforcement learning algorithm in an experimental evaluation on several benchmarks.

Meticulously analysing the empirical strengths and weaknesses of reinforcement learning methods in hard (challenging) environments is essential to inspire innovations and assess progress in the field. In tabular reinforcement learning, there is no well-established standard selection of environments to conduct such analysis, which is partially due to the lack of a widespread understanding of the rich theory of hardness of environments. The goal of this paper is to unlock the practical usefulness of this theory through four main contributions. First, we present a systematic survey of the theory of hardness, which also identifies promising research directions. Second, we introduce Colosseum, a pioneering package that enables empirical hardness analysis and implements a principled benchmark composed of environments that are diverse with respect to different measures of hardness. Third, we present an empirical analysis that provides new insights into computable measures. Finally, we benchmark five tabular agents in our newly proposed benchmark. While advancing the theoretical understanding of hardness in non-tabular reinforcement learning remains essential, our contributions in the tabular setting are intended as solid steps towards a principled non-tabular benchmark. Accordingly, we benchmark four agents in non-tabular versions of Colosseum environments, obtaining results that demonstrate the generality of tabular hardness measures.

Long-term fairness is an important factor of consideration in designing and deploying learning-based decision systems in high-stake decision-making contexts. Recent work has proposed the use of Markov Decision Processes (MDPs) to formulate decision-making with long-term fairness requirements in dynamically changing environments, and demonstrated major challenges in directly deploying heuristic and rule-based policies that worked well in static environments. We show that policy optimization methods from deep reinforcement learning can be used to find strictly better decision policies that can often achieve both higher overall utility and less violation of the fairness requirements, compared to previously-known strategies. In particular, we propose new methods for imposing fairness requirements in policy optimization by regularizing the advantage evaluation of different actions. Our proposed methods make it easy to impose fairness constraints without reward engineering or sacrificing training efficiency. We perform detailed analyses in three established case studies, including attention allocation in incident monitoring, bank loan approval, and vaccine distribution in population networks.

We propose cooperative edge-assisted dynamic federated learning (CE-FL). CE-FL introduces a distributed machine learning (ML) architecture, where data collection is carried out at the end devices, while the model training is conducted cooperatively at the end devices and the edge servers, enabled via data offloading from the end devices to the edge servers through base stations. CE-FL also introduces floating aggregation point, where the local models generated at the devices and the servers are aggregated at an edge server, which varies from one model training round to another to cope with the network evolution in terms of data distribution and users' mobility. CE-FL considers the heterogeneity of network elements in terms of communication/computation models and the proximity to one another. CE-FL further presumes a dynamic environment with online variation of data at the network devices which causes a drift at the ML model performance. We model the processes taken during CE-FL, and conduct analytical convergence analysis of its ML model training. We then formulate network-aware CE-FL which aims to adaptively optimize all the network elements via tuning their contribution to the learning process, which turns out to be a non-convex mixed integer problem. Motivated by the large scale of the system, we propose a distributed optimization solver to break down the computation of the solution across the network elements. We finally demonstrate the effectiveness of our framework with the data collected from a real-world testbed.

In many applications, it is often of practical and scientific interest to detect anomaly events in a streaming sequence of high-dimensional or non-Euclidean observations. We study a non-parametric framework that utilizes nearest neighbor information among the observations to detect changes in an online setting. It can be applied to data in arbitrary dimension and non-Euclidean data as long as a similarity measure on the sample space can be defined. We consider new test statistics under this framework that can detect anomaly events more effectively than the existing test while keeping the false discovery rate controlled at a fixed level. Analytic formulas approximating the average run lengths of the new approaches are derived to make them fast applicable to modern datasets. Simulation studies are provided to support theoretical results. The proposed approach is illustrated with an analysis of the NYC taxi dataset.

Deep learning is usually described as an experiment-driven field under continuous criticizes of lacking theoretical foundations. This problem has been partially fixed by a large volume of literature which has so far not been well organized. This paper reviews and organizes the recent advances in deep learning theory. The literature is categorized in six groups: (1) complexity and capacity-based approaches for analyzing the generalizability of deep learning; (2) stochastic differential equations and their dynamic systems for modelling stochastic gradient descent and its variants, which characterize the optimization and generalization of deep learning, partially inspired by Bayesian inference; (3) the geometrical structures of the loss landscape that drives the trajectories of the dynamic systems; (4) the roles of over-parameterization of deep neural networks from both positive and negative perspectives; (5) theoretical foundations of several special structures in network architectures; and (6) the increasingly intensive concerns in ethics and security and their relationships with generalizability.

Seamlessly interacting with humans or robots is hard because these agents are non-stationary. They update their policy in response to the ego agent's behavior, and the ego agent must anticipate these changes to co-adapt. Inspired by humans, we recognize that robots do not need to explicitly model every low-level action another agent will make; instead, we can capture the latent strategy of other agents through high-level representations. We propose a reinforcement learning-based framework for learning latent representations of an agent's policy, where the ego agent identifies the relationship between its behavior and the other agent's future strategy. The ego agent then leverages these latent dynamics to influence the other agent, purposely guiding them towards policies suitable for co-adaptation. Across several simulated domains and a real-world air hockey game, our approach outperforms the alternatives and learns to influence the other agent.

The notion of uncertainty is of major importance in machine learning and constitutes a key element of machine learning methodology. In line with the statistical tradition, uncertainty has long been perceived as almost synonymous with standard probability and probabilistic predictions. Yet, due to the steadily increasing relevance of machine learning for practical applications and related issues such as safety requirements, new problems and challenges have recently been identified by machine learning scholars, and these problems may call for new methodological developments. In particular, this includes the importance of distinguishing between (at least) two different types of uncertainty, often refereed to as aleatoric and epistemic. In this paper, we provide an introduction to the topic of uncertainty in machine learning as well as an overview of hitherto attempts at handling uncertainty in general and formalizing this distinction in particular.

北京阿比特科技有限公司