亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this paper, we introduce a technique to estimate measured BRDFs from a sparse set of samples. Our approach offers accurate BRDF reconstructions that are generalizable to new materials. This opens the door to BDRF reconstructions from a variety of data sources. The success of our approach relies on the ability of hypernetworks to generate a robust representation of BRDFs and a set encoder that allows us to feed inputs of different sizes to the architecture. We evaluate our technique both qualitatively and quantitatively on the well-known MERL dataset of 100 isotropic materials. Our approach accurately estimates the BRDFs of unseen materials even for an extremely sparse sampling.

相關內容

In this paper we propose a new non-linear classifier based on a combination of locally linear classifiers. A well known optimization formulation is given as we cast the problem in a $\ell_1$ Multiple Kernel Learning (MKL) problem using many locally linear kernels. Since the number of such kernels is huge, we provide a scalable generic MKL training algorithm handling streaming kernels. With respect to the inference time, the resulting classifier fits the gap between high accuracy but slow non-linear classifiers (such as classical MKL) and fast but low accuracy linear classifiers.

Diffusion models have demonstrated remarkable success in generative modeling. In this paper, we propose PADS (Pose Analysis by Diffusion Synthesis), a novel framework designed to address various challenges in 3D human pose analysis through a unified pipeline. Central to PADS are two distinctive strategies: i) learning a task-agnostic pose prior using a diffusion synthesis process to effectively capture the kinematic constraints in human pose data, and ii) unifying multiple pose analysis tasks like estimation, completion, denoising, etc, as instances of inverse problems. The learned pose prior will be treated as a regularization imposing on task-specific constraints, guiding the optimization process through a series of conditional denoising steps. PADS represents the first diffusion-based framework for tackling general 3D human pose analysis within the inverse problem framework. Its performance has been validated on different benchmarks, signaling the adaptability and robustness of this pipeline.

In this paper, we propose a Guided Attention (GA) auxiliary training loss, which improves the effectiveness and robustness of automatic speech recognition (ASR) contextual biasing without introducing additional parameters. A common challenge in previous literature is that the word error rate (WER) reduction brought by contextual biasing diminishes as the number of bias phrases increases. To address this challenge, we employ a GA loss as an additional training objective besides the Transducer loss. The proposed GA loss aims to teach the cross attention how to align bias phrases with text tokens or audio frames. Compared to studies with similar motivations, the proposed loss operates directly on the cross attention weights and is easier to implement. Through extensive experiments based on Conformer Transducer with Contextual Adapter, we demonstrate that the proposed method not only leads to a lower WER but also retains its effectiveness as the number of bias phrases increases. Specifically, the GA loss decreases the WER of rare vocabularies by up to 19.2% on LibriSpeech compared to the contextual biasing baseline, and up to 49.3% compared to a vanilla Transducer.

In this paper, we introduce a two-level attention schema, Poolingformer, for long document modeling. Its first level uses a smaller sliding window pattern to aggregate information from neighbors. Its second level employs a larger window to increase receptive fields with pooling attention to reduce both computational cost and memory consumption. We first evaluate Poolingformer on two long sequence QA tasks: the monolingual NQ and the multilingual TyDi QA. Experimental results show that Poolingformer sits atop three official leaderboards measured by F1, outperforming previous state-of-the-art models by 1.9 points (79.8 vs. 77.9) on NQ long answer, 1.9 points (79.5 vs. 77.6) on TyDi QA passage answer, and 1.6 points (67.6 vs. 66.0) on TyDi QA minimal answer. We further evaluate Poolingformer on a long sequence summarization task. Experimental results on the arXiv benchmark continue to demonstrate its superior performance.

In this paper, we proposed to apply meta learning approach for low-resource automatic speech recognition (ASR). We formulated ASR for different languages as different tasks, and meta-learned the initialization parameters from many pretraining languages to achieve fast adaptation on unseen target language, via recently proposed model-agnostic meta learning algorithm (MAML). We evaluated the proposed approach using six languages as pretraining tasks and four languages as target tasks. Preliminary results showed that the proposed method, MetaASR, significantly outperforms the state-of-the-art multitask pretraining approach on all target languages with different combinations of pretraining languages. In addition, since MAML's model-agnostic property, this paper also opens new research direction of applying meta learning to more speech-related applications.

In this paper, we propose Latent Relation Language Models (LRLMs), a class of language models that parameterizes the joint distribution over the words in a document and the entities that occur therein via knowledge graph relations. This model has a number of attractive properties: it not only improves language modeling performance, but is also able to annotate the posterior probability of entity spans for a given text through relations. Experiments demonstrate empirical improvements over both a word-based baseline language model and a previous approach that incorporates knowledge graph information. Qualitative analysis further demonstrates the proposed model's ability to learn to predict appropriate relations in context.

In this paper, we present an accurate and scalable approach to the face clustering task. We aim at grouping a set of faces by their potential identities. We formulate this task as a link prediction problem: a link exists between two faces if they are of the same identity. The key idea is that we find the local context in the feature space around an instance (face) contains rich information about the linkage relationship between this instance and its neighbors. By constructing sub-graphs around each instance as input data, which depict the local context, we utilize the graph convolution network (GCN) to perform reasoning and infer the likelihood of linkage between pairs in the sub-graphs. Experiments show that our method is more robust to the complex distribution of faces than conventional methods, yielding favorably comparable results to state-of-the-art methods on standard face clustering benchmarks, and is scalable to large datasets. Furthermore, we show that the proposed method does not need the number of clusters as prior, is aware of noises and outliers, and can be extended to a multi-view version for more accurate clustering accuracy.

BERT, a pre-trained Transformer model, has achieved ground-breaking performance on multiple NLP tasks. In this paper, we describe BERTSUM, a simple variant of BERT, for extractive summarization. Our system is the state of the art on the CNN/Dailymail dataset, outperforming the previous best-performed system by 1.65 on ROUGE-L. The codes to reproduce our results are available at //github.com/nlpyang/BertSum

In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.

In this paper, we propose a conceptually simple and geometrically interpretable objective function, i.e. additive margin Softmax (AM-Softmax), for deep face verification. In general, the face verification task can be viewed as a metric learning problem, so learning large-margin face features whose intra-class variation is small and inter-class difference is large is of great importance in order to achieve good performance. Recently, Large-margin Softmax and Angular Softmax have been proposed to incorporate the angular margin in a multiplicative manner. In this work, we introduce a novel additive angular margin for the Softmax loss, which is intuitively appealing and more interpretable than the existing works. We also emphasize and discuss the importance of feature normalization in the paper. Most importantly, our experiments on LFW BLUFR and MegaFace show that our additive margin softmax loss consistently performs better than the current state-of-the-art methods using the same network architecture and training dataset. Our code has also been made available at //github.com/happynear/AMSoftmax

北京阿比特科技有限公司