亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

While state-of-the-art facial expression recognition (FER) classifiers achieve a high level of accuracy, they lack interpretability, an important aspect for end-users. To recognize basic facial expressions, experts resort to a codebook associating a set of spatial action units to a facial expression. In this paper, we follow the same expert footsteps, and propose a learning strategy that allows us to explicitly incorporate spatial action units (aus) cues into the classifier's training to build a deep interpretable model. In particular, using this aus codebook, input image expression label, and facial landmarks, a single action units heatmap is built to indicate the most discriminative regions of interest in the image w.r.t the facial expression. We leverage this valuable spatial cue to train a deep interpretable classifier for FER. This is achieved by constraining the spatial layer features of a classifier to be correlated with \aus map. Using a composite loss, the classifier is trained to correctly classify an image while yielding interpretable visual layer-wise attention correlated with aus maps, simulating the experts' decision process. This is achieved using only the image class expression as supervision and without any extra manual annotations. Moreover, our method is generic. It can be applied to any CNN- or transformer-based deep classifier without the need for architectural change or adding significant training time. Our extensive evaluation on two public benchmarks RAFDB, and AFFECTNET datasets shows that our proposed strategy can improve layer-wise interpretability without degrading classification performance. In addition, we explore a common type of interpretable classifiers that rely on Class-Activation Mapping methods (CAMs), and we show that our training technique improves the CAM interpretability.

相關內容

Many studies have identified particular features of artificial intelligences (AI), such as their autonomy and emotion expression, that affect the extent to which they are treated as subjects of moral consideration. However, there has not yet been a comparison of the relative importance of features as is necessary to design and understand increasingly capable, multi-faceted AI systems. We conducted an online conjoint experiment in which 1,163 participants evaluated descriptions of AIs that varied on these features. All 11 features increased how morally wrong participants considered it to harm the AIs. The largest effects were from human-like physical bodies and prosociality (i.e., emotion expression, emotion recognition, cooperation, and moral judgment). For human-computer interaction designers, the importance of prosociality suggests that, because AIs are often seen as threatening, the highest levels of moral consideration may only be granted if the AI has positive intentions.

Beyond diagonal reconfigurable intelligent surface (BD-RIS) extends conventional RIS through novel architectures, such as group-connected RIS, with scattering matrix not restricted to being diagonal. However, it remains unexplored how to optimally group the elements in group-connected RISs to maximize the performance while maintaining a low-complexity circuit. In this study, we propose and model BD-RIS with a static grouping strategy optimized based on the channel statistics. After formulating the corresponding problems, we design the grouping in single- and multi-user systems. Numerical results reveal the benefits of grouping optimization, i.e., up to 60% sum rate improvement, especially in highly correlated channels.

Humans possess a remarkable ability to react to unpredictable perturbations through immediate mechanical responses, which harness the visco-elastic properties of muscles to maintain balance. Inspired by this behaviour, we propose a novel design of a robotic leg utilising fibre jammed structures as passive compliant mechanisms to achieve variable joint stiffness and damping. We developed multi-material fibre jammed tendons with tunable mechanical properties, which can be 3D printed in one-go without need for assembly. Through extensive numerical simulations and experimentation, we demonstrate the usefulness of these tendons for shock absorbance and maintaining joint stability. We investigate how they could be used effectively in a multi-joint robotic leg by evaluating the relative contribution of each tendon to the overall stiffness of the leg. Further, we showcase the potential of these jammed structures for legged locomotion, highlighting how morphological properties of the tendons can be used to enhance stability in robotic legs.

Despite their sophisticated capabilities, large language models (LLMs) encounter a major hurdle in effective assessment. This paper first revisits the prevalent evaluation method-multiple choice question answering (MCQA), which allows for straightforward accuracy measurement. Through a comprehensive evaluation of 24 models across 11 benchmarks, we highlight several potential drawbacks of MCQA, for instance, the inconsistency between the MCQA evaluation and the generation of open-ended responses in practical scenarios. In response, we introduce an RWQ-Elo rating system, engaging 24 LLMs such as GPT-4, GPT-3.5, Google-Gemini-Pro and LLaMA-1/-2, in a two-player competitive format, with GPT-4 serving as the judge. Each LLM receives an Elo rating thereafter. This system is designed to mirror real-world usage, and for this purpose, we have compiled a new benchmark called ``Real-world questions'' (RWQ), comprising 20,772 authentic user inquiries. Additionally, we thoroughly analyze the characteristics of our system and compare it with prior leaderboards like AlpacaEval and MT-Bench. Our analysis reveals the stability of our RWQ-Elo system, the feasibility of registering new models, and its potential to reshape LLM leaderboards.

In the realm of Business Process Management (BPM), process modeling plays a crucial role in translating complex process dynamics into comprehensible visual representations, facilitating the understanding, analysis, improvement, and automation of organizational processes. Traditional process modeling methods often require extensive expertise and can be time-consuming. This paper explores the integration of Large Language Models (LLMs) into process modeling to enhance flexibility, efficiency, and accessibility of process modeling for both expert and non-expert users. We propose a framework that leverages LLMs for the automated generation and iterative refinement of process models starting from textual descriptions. Our framework involves innovative prompting strategies for effective LLM utilization, along with a secure model generation protocol and an error-handling mechanism. Moreover, we instantiate a concrete system extending our framework. This system provides robust quality guarantees on the models generated and supports exporting them in standard modeling notations, such as the Business Process Modeling Notation (BPMN) and Petri nets. Preliminary results demonstrate the framework's ability to streamline process modeling tasks, underscoring the transformative potential of generative AI in the BPM field.

Recent contrastive representation learning methods rely on estimating mutual information (MI) between multiple views of an underlying context. E.g., we can derive multiple views of a given image by applying data augmentation, or we can split a sequence into views comprising the past and future of some step in the sequence. Contrastive lower bounds on MI are easy to optimize, but have a strong underestimation bias when estimating large amounts of MI. We propose decomposing the full MI estimation problem into a sum of smaller estimation problems by splitting one of the views into progressively more informed subviews and by applying the chain rule on MI between the decomposed views. This expression contains a sum of unconditional and conditional MI terms, each measuring modest chunks of the total MI, which facilitates approximation via contrastive bounds. To maximize the sum, we formulate a contrastive lower bound on the conditional MI which can be approximated efficiently. We refer to our general approach as Decomposed Estimation of Mutual Information (DEMI). We show that DEMI can capture a larger amount of MI than standard non-decomposed contrastive bounds in a synthetic setting, and learns better representations in a vision domain and for dialogue generation.

Recently, a considerable literature has grown up around the theme of Graph Convolutional Network (GCN). How to effectively leverage the rich structural information in complex graphs, such as knowledge graphs with heterogeneous types of entities and relations, is a primary open challenge in the field. Most GCN methods are either restricted to graphs with a homogeneous type of edges (e.g., citation links only), or focusing on representation learning for nodes only instead of jointly propagating and updating the embeddings of both nodes and edges for target-driven objectives. This paper addresses these limitations by proposing a novel framework, namely the Knowledge Embedding based Graph Convolutional Network (KE-GCN), which combines the power of GCNs in graph-based belief propagation and the strengths of advanced knowledge embedding (a.k.a. knowledge graph embedding) methods, and goes beyond. Our theoretical analysis shows that KE-GCN offers an elegant unification of several well-known GCN methods as specific cases, with a new perspective of graph convolution. Experimental results on benchmark datasets show the advantageous performance of KE-GCN over strong baseline methods in the tasks of knowledge graph alignment and entity classification.

This paper presents a new approach for assembling graph neural networks based on framelet transforms. The latter provides a multi-scale representation for graph-structured data. With the framelet system, we can decompose the graph feature into low-pass and high-pass frequencies as extracted features for network training, which then defines a framelet-based graph convolution. The framelet decomposition naturally induces a graph pooling strategy by aggregating the graph feature into low-pass and high-pass spectra, which considers both the feature values and geometry of the graph data and conserves the total information. The graph neural networks with the proposed framelet convolution and pooling achieve state-of-the-art performance in many types of node and graph prediction tasks. Moreover, we propose shrinkage as a new activation for the framelet convolution, which thresholds the high-frequency information at different scales. Compared to ReLU, shrinkage in framelet convolution improves the graph neural network model in terms of denoising and signal compression: noises in both node and structure can be significantly reduced by accurately cutting off the high-pass coefficients from framelet decomposition, and the signal can be compressed to less than half its original size with the prediction performance well preserved.

Weakly supervised phrase grounding aims at learning region-phrase correspondences using only image-sentence pairs. A major challenge thus lies in the missing links between image regions and sentence phrases during training. To address this challenge, we leverage a generic object detector at training time, and propose a contrastive learning framework that accounts for both region-phrase and image-sentence matching. Our core innovation is the learning of a region-phrase score function, based on which an image-sentence score function is further constructed. Importantly, our region-phrase score function is learned by distilling from soft matching scores between the detected object class names and candidate phrases within an image-sentence pair, while the image-sentence score function is supervised by ground-truth image-sentence pairs. The design of such score functions removes the need of object detection at test time, thereby significantly reducing the inference cost. Without bells and whistles, our approach achieves state-of-the-art results on the task of visual phrase grounding, surpassing previous methods that require expensive object detectors at test time.

Graph Convolutional Networks (GCNs) and their variants have experienced significant attention and have become the de facto methods for learning graph representations. GCNs derive inspiration primarily from recent deep learning approaches, and as a result, may inherit unnecessary complexity and redundant computation. In this paper, we reduce this excess complexity through successively removing nonlinearities and collapsing weight matrices between consecutive layers. We theoretically analyze the resulting linear model and show that it corresponds to a fixed low-pass filter followed by a linear classifier. Notably, our experimental evaluation demonstrates that these simplifications do not negatively impact accuracy in many downstream applications. Moreover, the resulting model scales to larger datasets, is naturally interpretable, and yields up to two orders of magnitude speedup over FastGCN.

北京阿比特科技有限公司