亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work we present a consistent reduction of the relaxed micromorphic model to its corresponding two-dimensional planar model, such that its capacity to capture discontinuous dilatation fields is preserved. As a direct consequence of our approach, new conforming finite elements for $H^\mathrm{dev}(\mathrm{Curl},A)$ become necessary. We present two novel $H^\mathrm{dev}(\mathrm{Curl},A)$-conforming finite element spaces, of which one is a macro element based on Clough--Tocher splits, as well as primal and mixed variational formulations of the planar relaxed micromorphic model. Finally, we demonstrate the effectiveness of our approach with two numerical examples.

相關內容

ACM/IEEE第23屆模型驅動工程語言和系統國際會議,是模型驅動軟件和系統工程的首要會議系列,由ACM-SIGSOFT和IEEE-TCSE支持組織。自1998年以來,模型涵蓋了建模的各個方面,從語言和方法到工具和應用程序。模特的參加者來自不同的背景,包括研究人員、學者、工程師和工業專業人士。MODELS 2019是一個論壇,參與者可以圍繞建模和模型驅動的軟件和系統交流前沿研究成果和創新實踐經驗。今年的版本將為建模社區提供進一步推進建模基礎的機會,并在網絡物理系統、嵌入式系統、社會技術系統、云計算、大數據、機器學習、安全、開源等新興領域提出建模的創新應用以及可持續性。 官網鏈接: · 近似 · 情景 · 路徑 · 分解的 ·
2024 年 7 月 2 日

We consider the problem of computing an approximate weighted shortest path in a weighted subdivision, with weights assigned from the set $\{0, 1, \infty\}$. We present a data structure $B$, which stores a set of convex, non-overlapping regions. These include zero-cost regions (0-regions) with a weight of $0$ and obstacles with a weight of $\infty$, all embedded in a plane with a weight of $1$. The data structure $B$ can be constructed in expected time $O(N + (n/\varepsilon^3)(\log(n/\varepsilon) + \log N))$, where $n$ is the total number of regions, $N$ represents the total complexity of the regions, and $1 + \varepsilon$ is the approximation factor, for any $0 < \varepsilon < 1$. Using $B$, one can compute an approximate weighted shortest path from any point $s$ to any point $t$ in $O(N + n/\varepsilon^3 + (n/\varepsilon^2) \log(n/\varepsilon) + (\log N)/\varepsilon)$ time. In the special case where the 0-regions and obstacles are polygons (not necessarily convex), $B$ contains a $(1 + \varepsilon)$-spanner of the input vertices.

In this work, we study and extend a class of semi-Lagrangian exponential methods, which combine exponential time integration techniques, suitable for integrating stiff linear terms, with a semi-Lagrangian treatment of nonlinear advection terms. Partial differential equations involving both processes arise for instance in atmospheric circulation models. Through a truncation error analysis, we show that previously formulated semi-Lagrangian exponential schemes are limited to first-order accuracy due to the discretization of the linear term; we then formulate a new discretization leading to second-order accuracy. Also, a detailed stability study is conducted to compare several Eulerian and semi-Lagrangian exponential schemes, as well as a well-established semi-Lagrangian semi-implicit method, which is used in operational atmospheric models. Numerical simulations of the shallow-water equations on the rotating sphere are performed to assess the orders of convergence, stability properties, and computational cost of each method. The proposed second-order semi-Lagrangian exponential method was shown to be more stable and accurate than the previously formulated schemes of the same class at the expense of larger wall-clock times; however, the method is more stable and has a similar cost compared to the well-established semi-Lagrangian semi-implicit method; therefore, it is a competitive candidate for potential operational applications in atmospheric circulation modeling.

In shape-constrained nonparametric inference, it is often necessary to perform preliminary tests to verify whether a probability mass function (p.m.f.) satisfies qualitative constraints such as monotonicity, convexity or in general $k$-monotonicity. In this paper, we are interested in testing $k$-monotonicity of a compactly supported p.m.f. and we put our main focus on monotonicity and convexity; i.e., $k \in \{1,2\}$. We consider new testing procedures that are directly derived from the definition of $k$-monotonicity and rely exclusively on the empirical measure, as well as tests that are based on the projection of the empirical measure on the class of $k$-monotone p.m.f.s. The asymptotic behaviour of the introduced test statistics is derived and a simulation study is performed to assess the finite sample performance of all the proposed tests. Applications to real datasets are presented to illustrate the theory.

Neural operators such as the Fourier Neural Operator (FNO) have been shown to provide resolution-independent deep learning models that can learn mappings between function spaces. For example, an initial condition can be mapped to the solution of a partial differential equation (PDE) at a future time-step using a neural operator. Despite the popularity of neural operators, their use to predict solution functions over a domain given only data over the boundary (such as a spatially varying Dirichlet boundary condition) remains unexplored. In this paper, we refer to such problems as boundary-to-domain problems; they have a wide range of applications in areas such as fluid mechanics, solid mechanics, heat transfer etc. We present a novel FNO-based architecture, named Lifting Product FNO (or LP-FNO) which can map arbitrary boundary functions defined on the lower-dimensional boundary to a solution in the entire domain. Specifically, two FNOs defined on the lower-dimensional boundary are lifted into the higher dimensional domain using our proposed lifting product layer. We demonstrate the efficacy and resolution independence of the proposed LP-FNO for the 2D Poisson equation.

With the goal of obtaining strong relaxations for binary polynomial optimization problems, we introduce the pseudo-Boolean polytope defined as the convex hull of the set of binary points satisfying a collection of equations containing pseudo-Boolean functions. By representing the pseudo-Boolean polytope via a signed hypergraph, we obtain sufficient conditions under which this polytope has a polynomial-size extended formulation. Our new framework unifies and extends all prior results on the existence of polynomial-size extended formulations for the convex hull of the feasible region of binary polynomial optimization problems of degree at least three.

The use of variable grid BDF methods for parabolic equations leads to structures that are called variable (coefficient) Toeplitz. Here, we consider a more general class of matrix-sequences and we prove that they belong to the maximal $*$-algebra of generalized locally Toeplitz (GLT) matrix-sequences. Then, we identify the associated GLT symbols in the general setting and in the specific case, by providing in both cases a spectral and singular value analysis. More specifically, we use the GLT tools in order to study the asymptotic behaviour of the eigenvalues and singular values of the considered BDF matrix-sequences, in connection with the given non-uniform grids. Numerical examples, visualizations, and open problems end the present work.

We introduce a new Langevin dynamics based algorithm, called e-TH$\varepsilon$O POULA, to solve optimization problems with discontinuous stochastic gradients which naturally appear in real-world applications such as quantile estimation, vector quantization, CVaR minimization, and regularized optimization problems involving ReLU neural networks. We demonstrate both theoretically and numerically the applicability of the e-TH$\varepsilon$O POULA algorithm. More precisely, under the conditions that the stochastic gradient is locally Lipschitz in average and satisfies a certain convexity at infinity condition, we establish non-asymptotic error bounds for e-TH$\varepsilon$O POULA in Wasserstein distances and provide a non-asymptotic estimate for the expected excess risk, which can be controlled to be arbitrarily small. Three key applications in finance and insurance are provided, namely, multi-period portfolio optimization, transfer learning in multi-period portfolio optimization, and insurance claim prediction, which involve neural networks with (Leaky)-ReLU activation functions. Numerical experiments conducted using real-world datasets illustrate the superior empirical performance of e-TH$\varepsilon$O POULA compared to SGLD, TUSLA, ADAM, and AMSGrad in terms of model accuracy.

Structure-preserving particle methods have recently been proposed for a class of nonlinear continuity equations, including aggregation-diffusion equation in [J. Carrillo, K. Craig, F. Patacchini, Calc. Var., 58 (2019), pp. 53] and the Landau equation in [J. Carrillo, J. Hu., L. Wang, J. Wu, J. Comput. Phys. X, 7 (2020), pp. 100066]. One common feature to these equations is that they both admit some variational formulation, which upon proper regularization, leads to particle approximations dissipating the energy and conserving some quantities simultaneously at the semi-discrete level. In this paper, we formulate continuity equations with a density dependent bilinear form associated with the variational derivative of the energy functional and prove that appropriate particle methods satisfy a compatibility condition with its regularized energy. This enables us to utilize discrete gradient time integrators and show that the energy can be dissipated and the mass conserved simultaneously at the fully discrete level. In the case of the Landau equation, we prove that our approach also conserves the momentum and kinetic energy at the fully discrete level. Several numerical examples are presented to demonstrate the dissipative and conservative properties of our proposed method.

We show that differential privacy type guarantees can be obtained when using a Poisson synthesis mechanism to protect counts in contingency tables. Specifically, we show how to obtain $(\epsilon, \delta)$-probabilistic differential privacy guarantees via the Poisson distribution's cumulative distribution function. We demonstrate this empirically with the synthesis of an administrative-type confidential database.

We are motivated by a study that seeks to better understand the dynamic relationship between muscle activation and paw position during locomotion. For each gait cycle in this experiment, activation in the biceps and triceps is measured continuously and in parallel with paw position as a mouse trotted on a treadmill. We propose an innovative general regression method that draws from both ordinary differential equations and functional data analysis to model the relationship between these functional inputs and responses as a dynamical system that evolves over time. Specifically, our model addresses gaps in both literatures and borrows strength across curves estimating ODE parameters across all curves simultaneously rather than separately modeling each functional observation. Our approach compares favorably to related functional data methods in simulations and in cross-validated predictive accuracy of paw position in the gait data. In the analysis of the gait cycles, we find that paw speed and position are dynamically influenced by inputs from the biceps and triceps muscles, and that the effect of muscle activation persists beyond the activation itself.

北京阿比特科技有限公司