Given items of different sizes and a fixed bin capacity, the bin-packing problem is to pack these items into a minimum number of bins such that the sum of item sizes in a bin does not exceed the capacity. We define a new variant called $k$-times bin packing ($k$BP), where the goal is to pack the items such that each item appears exactly $k$ times, in $k$ different bins. We generalize some existing approximation algorithms for bin-packing to solve $k$BP, and analyze their performance ratio. The study of $k$BP is motivated by the problem of fair electricity distribution. In many developing countries, the total electricity demand is higher than the supply capacity. We show that $k$-times bin packing can be used to distribute the electricity in a fair and efficient way. Particularly, we implement generalizations of the First-Fit and First-Fit-Decreasing bin-packing algorithms to solve $k$BP, and apply the generalizations to real electricity demand data. We show that our generalizations outperform existing heuristic solutions to the same problem.
We introduce a single-set axiomatisation of cubical $\omega$-categories, including connections and inverses. We justify these axioms by establishing a series of equivalences between the category of single-set cubical $\omega$-categories, and their variants with connections and inverses, and the corresponding cubical $\omega$-categories. We also report on the formalisation of cubical $\omega$-categories with the Isabelle/HOL proof assistant, which has been instrumental in finding the single-set axioms.
Human cognition operates on a "Global-first" cognitive mechanism, prioritizing information processing based on coarse-grained details. This mechanism inherently possesses an adaptive multi-granularity description capacity, resulting in computational traits such as efficiency, robustness, and interpretability. The analysis pattern reliance on the finest granularity and single-granularity makes most existing computational methods less efficient, robust, and interpretable, which is an important reason for the current lack of interpretability in neural networks. Multi-granularity granular-ball computing employs granular-balls of varying sizes to daptively represent and envelop the sample space, facilitating learning based on these granular-balls. Given that the number of coarse-grained "granular-balls" is fewer than sample points, granular-ball computing proves more efficient. Moreover, the inherent coarse-grained nature of granular-balls reduces susceptibility to fine-grained sample disturbances, enhancing robustness. The multi-granularity construct of granular-balls generates topological structures and coarse-grained descriptions, naturally augmenting interpretability. Granular-ball computing has successfully ventured into diverse AI domains, fostering the development of innovative theoretical methods, including granular-ball classifiers, clustering techniques, neural networks, rough sets, and evolutionary computing. This has notably ameliorated the efficiency, noise robustness, and interpretability of traditional methods. Overall, granular-ball computing is a rare and innovative theoretical approach in AI that can adaptively and simultaneously enhance efficiency, robustness, and interpretability. This article delves into the main application landscapes for granular-ball computing, aiming to equip future researchers with references and insights to refine and expand this promising theory.
The interpretability of models has become a crucial issue in Machine Learning because of algorithmic decisions' growing impact on real-world applications. Tree ensemble methods, such as Random Forests or XgBoost, are powerful learning tools for classification tasks. However, while combining multiple trees may provide higher prediction quality than a single one, it sacrifices the interpretability property resulting in "black-box" models. In light of this, we aim to develop an interpretable representation of a tree-ensemble model that can provide valuable insights into its behavior. First, given a target tree-ensemble model, we develop a hierarchical visualization tool based on a heatmap representation of the forest's feature use, considering the frequency of a feature and the level at which it is selected as an indicator of importance. Next, we propose a mixed-integer linear programming (MILP) formulation for constructing a single optimal multivariate tree that accurately mimics the target model predictions. The goal is to provide an interpretable surrogate model based on oblique hyperplane splits, which uses only the most relevant features according to the defined forest's importance indicators. The MILP model includes a penalty on feature selection based on their frequency in the forest to further induce sparsity of the splits. The natural formulation has been strengthened to improve the computational performance of {mixed-integer} software. Computational experience is carried out on benchmark datasets from the UCI repository using a state-of-the-art off-the-shelf solver. Results show that the proposed model is effective in yielding a shallow interpretable tree approximating the tree-ensemble decision function.
Multivariate spatio-temporal models are widely applicable, but specifying their structure is complicated and may inhibit wider use. We introduce the R package tinyVAST from two viewpoints: the software user and the statistician. From the user viewpoint, tinyVAST adapts a widely used formula interface to specify generalized additive models, and combines this with arguments to specify spatial and spatio-temporal interactions among variables. These interactions are specified using arrow notation (from structural equation models), or an extended arrow-and-lag notation that allows simultaneous, lagged, and recursive dependencies among variables over time. The user also specifies a spatial domain for areal (gridded), continuous (point-count), or stream-network data. From the statistician viewpoint, tinyVAST constructs sparse precision matrices representing multivariate spatio-temporal variation, and parameters are estimated by specifying a generalized linear mixed model (GLMM). This expressive interface encompasses vector autoregressive, empirical orthogonal functions, spatial factor analysis, and ARIMA models. To demonstrate, we fit to data from two survey platforms sampling corals, sponges, rockfishes, and flatfishes in the Gulf of Alaska and Aleutian Islands. We then compare eight alternative model structures using different assumptions about habitat drivers and survey detectability. Model selection suggests that towed-camera and bottom trawl gears have spatial variation in detectability but sample the same underlying density of flatfishes and rockfishes, and that rockfishes are positively associated with sponges while flatfishes are negatively associated with corals. We conclude that tinyVAST can be used to test complicated dependencies representing alternative structural assumptions for research and real-world policy evaluation.
We consider approximation of the variable-coefficient Helmholtz equation in the exterior of a Dirichlet obstacle using perfectly-matched-layer (PML) truncation; it is well known that this approximation is exponentially accurate in the PML width and the scaling angle, and the approximation was recently proved to be exponentially accurate in the wavenumber $k$ in [Galkowski, Lafontaine, Spence, 2021]. We show that the $hp$-FEM applied to this problem does not suffer from the pollution effect, in that there exist $C_1,C_2>0$ such that if $hk/p\leq C_1$ and $p \geq C_2 \log k$ then the Galerkin solutions are quasioptimal (with constant independent of $k$), under the following two conditions (i) the solution operator of the original Helmholtz problem is polynomially bounded in $k$ (which occurs for "most" $k$ by [Lafontaine, Spence, Wunsch, 2021]), and (ii) either there is no obstacle and the coefficients are smooth or the obstacle is analytic and the coefficients are analytic in a neighbourhood of the obstacle and smooth elsewhere. This $hp$-FEM result is obtained via a decomposition of the PML solution into "high-" and "low-frequency" components, analogous to the decomposition for the original Helmholtz solution recently proved in [Galkowski, Lafontaine, Spence, Wunsch, 2022]. The decomposition is obtained using tools from semiclassical analysis (i.e., the PDE techniques specifically designed for studying Helmholtz problems with large $k$).
This paper studies the convergence of a spatial semidiscretization of a three-dimensional stochastic Allen-Cahn equation with multiplicative noise. For non-smooth initial values, the regularity of the mild solution is investigated, and an error estimate is derived with the spatial $ L^2 $-norm. For smooth initial values, two error estimates with the general spatial $ L^q $-norms are established.
Kernel-based multi-marker tests for survival outcomes use primarily the Cox model to adjust for covariates. The proportional hazards assumption made by the Cox model could be unrealistic, especially in the long-term follow-up. We develop a suite of novel multi-marker survival tests for genetic association based on the accelerated failure time model, which is a popular alternative to the Cox model due to its direct physical interpretation. The tests are based on the asymptotic distributions of their test statistics and are thus computationally efficient. The association tests can account for the heterogeneity of genetic effects across sub-populations/individuals to increase the power. All the new tests can deal with competing risks and left truncation. Moreover, we develop small-sample corrections to the tests to improve their accuracy under small samples. Extensive numerical experiments show that the new tests perform very well in various scenarios. An application to a genetic dataset of Alzheimer's disease illustrates the tests' practical utility.
The structured $\varepsilon$-stability radius is introduced as a quantity to assess the robustness of transient bounds of solutions to linear differential equations under structured perturbations of the matrix. This applies to general linear structures such as complex or real matrices with a given sparsity pattern or with restricted range and corange, or special classes such as Toeplitz matrices. The notion conceptually combines unstructured and structured pseudospectra in a joint pseudospectrum, allowing for the use of resolvent bounds as with unstructured pseudospectra and for structured perturbations as with structured pseudospectra. We propose and study an algorithm for computing the structured $\varepsilon$-stability radius. This algorithm solves eigenvalue optimization problems via suitably discretized rank-1 matrix differential equations that originate from a gradient system. The proposed algorithm has essentially the same computational cost as the known rank-1 algorithms for computing unstructured and structured stability radii. Numerical experiments illustrate the behavior of the algorithm.
SARRIGUREN, a new complete algorithm for SAT based on counting clauses (which is valid also for Unique-SAT and #SAT) is described, analyzed and tested. Although existing complete algorithms for SAT perform slower with clauses with many literals, that is an advantage for SARRIGUREN, because the more literals are in the clauses the bigger is the probability of overlapping among clauses, a property that makes the clause counting process more efficient. Actually, it provides a $O(m^2 \times n/k)$ time complexity for random $k$-SAT instances of $n$ variables and $m$ relatively dense clauses, where that density level is relative to the number of variables $n$, that is, clauses are relatively dense when $k\geq7\sqrt{n}$. Although theoretically there could be worst-cases with exponential complexity, the probability of those cases to happen in random $k$-SAT with relatively dense clauses is practically zero. The algorithm has been empirically tested and that polynomial time complexity maintains also for $k$-SAT instances with less dense clauses ($k\geq5\sqrt{n}$). That density could, for example, be of only 0.049 working with $n=20000$ variables and $k=989$ literals. In addition, they are presented two more complementary algorithms that provide the solutions to $k$-SAT instances and valuable information about number of solutions for each literal. Although this algorithm does not solve the NP=P problem (it is not a polynomial algorithm for 3-SAT), it broads the knowledge about that subject, because $k$-SAT with $k>3$ and dense clauses is not harder than 3-SAT. Moreover, the Python implementation of the algorithms, and all the input datasets and obtained results in the experiments are made available.
In recent years, object detection has experienced impressive progress. Despite these improvements, there is still a significant gap in the performance between the detection of small and large objects. We analyze the current state-of-the-art model, Mask-RCNN, on a challenging dataset, MS COCO. We show that the overlap between small ground-truth objects and the predicted anchors is much lower than the expected IoU threshold. We conjecture this is due to two factors; (1) only a few images are containing small objects, and (2) small objects do not appear enough even within each image containing them. We thus propose to oversample those images with small objects and augment each of those images by copy-pasting small objects many times. It allows us to trade off the quality of the detector on large objects with that on small objects. We evaluate different pasting augmentation strategies, and ultimately, we achieve 9.7\% relative improvement on the instance segmentation and 7.1\% on the object detection of small objects, compared to the current state of the art method on MS COCO.