亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

P2P trading of energy can be a good alternative to incentivize distributed non-conventional energy production and meet the burgeoning energy demand. For efficient P2P trading, a free market for trading needs to be established while ensuring the information reliability, security, and privacy. Blockchain has been used to provide this framework, but it consumes very high energy and is slow. Further, until now, no blockchain model has considered the role of conventional electric utility companies in P2P trading. In this paper, we have introduced a credit blockchain that reduces energy consumption by employing a new mechanism to update transactions and increases speed by providing interest free loans to buyers. This model also integrates the electric utility companies within the P2P trading framework, thereby increasing members trading options. We have also discussed the pricing strategies for trading. All the above assertions have been verified through simulations, demonstrating that this model will promote P2P trading by providing enhanced security, speed, and greater trading options. The proposed model will also help trade energy at prices beneficial for both sellers and buyers.

相關內容

P2P:IEEE International Conference on Peer-to-Peer Computing。 Explanation:IEEE對等計算國際會議。 Publisher:IEEE。 SIT:

Active reconfigurable intelligent surface (ARIS) is a promising way to compensate for multiplicative fading attenuation by amplifying and reflecting event signals to selected users. This paper investigates the performance of ARIS assisted non-orthogonal multiple access (NOMA) networks over cascaded Nakagami-m fading channels. The effects of hardware impairments (HIS) and reflection coefficients on ARIS-NOMA networks with imperfect successive interference cancellation (ipSIC) and perfect successive interference cancellation (pSIC) are considered. More specifically, we develop new precise and asymptotic expressions of outage probability and ergodic data rate with ipSIC/pSIC for ARIS-NOMA-HIS networks. According to the approximated analyses, the diversity orders and multiplexing gains for couple of non-orthogonal users are attained in detail. Additionally, the energy efficiency of ARIS-NOMA-HIS networks is surveyed in delay-limited and delay-tolerant transmission schemes. The simulation findings are presented to demonstrate that: i) The outage behaviors and ergodic data rates of ARIS-NOMA-HIS networks precede that of ARIS aided orthogonal multiple access (OMA) and passive reconfigurable intelligent surface (PRIS) aided OMA; ii) As the reflection coefficient of ARIS increases, ARIS-NOMA-HIS networks have the ability to provide the strengthened outage performance; and iii) ARIS-NOMA-HIS networks are more energy efficient than ARIS/PRIS-OMA networks and conventional cooperative schemes.

Although numerous R-peak detectors have been proposed in the literature, their robustness and performance levels may significantly deteriorate in low-quality and noisy signals acquired from mobile electrocardiogram (ECG) sensors, such as Holter monitors. Recently, this issue has been addressed by deep 1-D convolutional neural networks (CNNs) that have achieved state-of-the-art performance levels in Holter monitors; however, they pose a high complexity level that requires special parallelized hardware setup for real-time processing. On the other hand, their performance deteriorates when a compact network configuration is used instead. This is an expected outcome as recent studies have demonstrated that the learning performance of CNNs is limited due to their strictly homogenous configuration with the sole linear neuron model. In this study, to further boost the peak detection performance along with an elegant computational efficiency, we propose 1-D Self-Organized ONNs (Self-ONNs) with generative neurons. The most crucial advantage of 1-D Self-ONNs over the ONNs is their self-organization capability that voids the need to search for the best operator set per neuron since each generative neuron has the ability to create the optimal operator during training. The experimental results over the China Physiological Signal Challenge-2020 (CPSC) dataset with more than one million ECG beats show that the proposed 1-D Self-ONNs can significantly surpass the state-of-the-art deep CNN with less computational complexity. Results demonstrate that the proposed solution achieves a 99.10% F1-score, 99.79% sensitivity, and 98.42% positive predictivity in the CPSC dataset, which is the best R-peak detection performance ever achieved.

As the energy footprint generated by software is increasing at an alarming rate, understanding how to develop energy-efficient applications has become a necessity. Previous work has introduced catalogs of coding practices, also known as energy patterns. These patterns are yet limited to Mobile or third-party libraries. In this study, we focus on the Web domain--a main source of energy consumption. First, we investigated whether and how Mobile energy patterns could be ported to this domain and found that 20 patterns could be ported. Then, we interviewed six expert web developers from different companies to challenge the ported patterns. Most developers expressed concerns for antipatterns, specifically with functional antipatterns, and were able to formulate guidelines to locate these patterns in the source code. Finally, to quantify the effect of Web energy patterns on energy consumption, we set up an automated pipeline to evaluate two ported patterns: 'Dynamic Retry Delay' (DRD) and 'Open Only When Necessary' (OOWN). With this, we found no evidence that the DRD pattern consumes less energy than its antipattern, while the opposite is true for OOWN. Data and Material: //doi.org/10.5281/zenodo.8404487

A promising strategy to protect quantum information from noise-induced errors is to encode it into the low-energy states of a topological quantum memory device. However, readout errors from such memory under realistic settings is less understood. We study the problem of decoding quantum information encoded in the groundspaces of topological stabilizer Hamiltonians in the presence of generic perturbations, such as quenched disorder. We first prove that the standard stabilizer-based error correction and decoding schemes work adequately well in such perturbed quantum codes by showing that the decoding error diminishes exponentially in the distance of the underlying unperturbed code. We then prove that Quantum Neural Network (QNN) decoders provide an almost quadratic improvement on the readout error. Thus, we demonstrate provable advantage of using QNNs for decoding realistic quantum error-correcting codes, and our result enables the exploration of a wider range of non-stabilizer codes in the near-term laboratory settings.

Attribution scores can be applied in data management to quantify the contribution of individual items to conclusions from the data, as part of the explanation of what led to these conclusions. In Artificial Intelligence, Machine Learning, and Data Management, some of the common scores are deployments of the Shapley value, a formula for profit sharing in cooperative game theory. Since its invention in the 1950s, the Shapley value has been used for contribution measurement in many fields, from economics to law, with its latest researched applications in modern machine learning. Recent studies investigated the application of the Shapley value to database management. This article gives an overview of recent results on the computational complexity of the Shapley value for measuring the contribution of tuples to query answers and to the extent of inconsistency with respect to integrity constraints. More specifically, the article highlights lower and upper bounds on the complexity of calculating the Shapley value, either exactly or approximately, as well as solutions for realizing the calculation in practice.

Kernel Stein discrepancies (KSDs) measure the quality of a distributional approximation and can be computed even when the target density has an intractable normalizing constant. Notable applications include the diagnosis of approximate MCMC samplers and goodness-of-fit tests for unnormalized statistical models. The present work analyzes the convergence control properties of KSDs. We first show that standard KSDs used for weak convergence control fail to control moment convergence. To address this limitation, we next provide sufficient conditions under which alternative diffusion KSDs control both moment and weak convergence. As an immediate consequence we develop, for each $q > 0$, the first KSDs known to exactly characterize $q$-Wasserstein convergence.

Long-term operation of nuclear steam generators can result in the occurrence of clogging, a deposition phenomenon that may increase the risk of mechanical and vibration loadings on tube bundles and internal structures as well as potentially affecting their response to hypothetical accidental transients. To manage and prevent this issue, a robust maintenance program that requires a fine understanding of the underlying physics is essential. This study focuses on the utilization of a clogging simulation code developed by EDF R\&D. This numerical tool employs specific physical models to simulate the kinetics of clogging and generates time dependent clogging rate profiles for particular steam generators. However, certain parameters in this code are subject to uncertainties. To address these uncertainties, Monte Carlo simulations are conducted to assess the distribution of the clogging rate. Subsequently, polynomial chaos expansions are used in order to build a metamodel while time-dependent Sobol' indices are computed to understand the impact of the random input parameters throughout the whole operating time. Comparisons are made with a previous published study and additional Hilbert-Schmidt independence criterion sensitivity indices are computed. Key input-output dependencies are exhibited in the different chemical conditionings and new behavior patterns in high-pH regimes are uncovered by the sensitivity analysis. These findings contribute to a better understanding of the clogging phenomenon while opening future lines of modeling research and helping in robustifying maintenance planning.

Energy efficiency is a big concern in industrial sectors. Finding the root cause of anomaly state of energy efficiency can help to improve energy efficiency of industrial systems and therefore save energy cost. In this research, we propose to use transfer entropy (TE) for root cause analysis on energy efficiency of industrial systems. A method, called TE flow, is proposed in that a TE flow from physical measurements of each subsystem to the energy efficiency indicator along timeline is considered as causal strength for diagnosing root cause of anomaly states of energy efficiency of a system. The copula entropy-based nonparametric TE estimator is used in the proposed method. We conducted experiments on real data collected from a compressing air system to verify the proposed method. Experimental results show that the TE flow method successfully identified the root cause of the energy (in)efficiency of the system.

Analyzing observational data from multiple sources can be useful for increasing statistical power to detect a treatment effect; however, practical constraints such as privacy considerations may restrict individual-level information sharing across data sets. This paper develops federated methods that only utilize summary-level information from heterogeneous data sets. Our federated methods provide doubly-robust point estimates of treatment effects as well as variance estimates. We derive the asymptotic distributions of our federated estimators, which are shown to be asymptotically equivalent to the corresponding estimators from the combined, individual-level data. We show that to achieve these properties, federated methods should be adjusted based on conditions such as whether models are correctly specified and stable across heterogeneous data sets.

Graph Neural Networks (GNNs) have recently become increasingly popular due to their ability to learn complex systems of relations or interactions arising in a broad spectrum of problems ranging from biology and particle physics to social networks and recommendation systems. Despite the plethora of different models for deep learning on graphs, few approaches have been proposed thus far for dealing with graphs that present some sort of dynamic nature (e.g. evolving features or connectivity over time). In this paper, we present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events. Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient. We furthermore show that several previous models for learning on dynamic graphs can be cast as specific instances of our framework. We perform a detailed ablation study of different components of our framework and devise the best configuration that achieves state-of-the-art performance on several transductive and inductive prediction tasks for dynamic graphs.

北京阿比特科技有限公司