亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Man-at-the-end (MATE) attackers have full control over the system on which the attacked software runs, and try to break the confidentiality or integrity of assets embedded in the software. Both companies and malware authors want to prevent such attacks. This has driven an arms race between attackers and defenders, resulting in a plethora of different protection and analysis methods. However, it remains difficult to measure the strength of protections because MATE attackers can reach their goals in many different ways and a universally accepted evaluation methodology does not exist. This survey systematically reviews the evaluation methodologies of papers on obfuscation, a major class of protections against MATE attacks. For 572 papers, we collected 113 aspects of their evaluation methodologies, ranging from sample set types and sizes, over sample treatment, to performed measurements. We provide detailed insights into how the academic state of the art evaluates both the protections and analyses thereon. In summary, there is a clear need for better evaluation methodologies. We identify nine challenges for software protection evaluations, which represent threats to the validity, reproducibility, and interpretation of research results in the context of MATE attacks.

相關內容

Continuous integration and delivery (CI/CD) are nowadays at the core of software development. Their benefits come at the cost of setting up and maintaining the CI/CD pipeline, which requires knowledge and skills often orthogonal to those entailed in other software-related tasks. While several recommender systems have been proposed to support developers across a variety of tasks, little automated support is available when it comes to setting up and maintaining CI/CD pipelines. We present GH-WCOM (GitHub Workflow COMpletion), a Transformer-based approach supporting developers in writing a specific type of CI/CD pipelines, namely GitHub workflows. To deal with such a task, we designed an abstraction process to help the learning of the transformer while still making GH-WCOM able to recommend very peculiar workflow elements such as tool options and scripting elements. Our empirical study shows that GH-WCOM provides up to 34.23% correct predictions, and the model's confidence is a reliable proxy for the recommendations' correctness likelihood.

Graph neural networks (GNNs) have achieved tremendous success in the task of graph classification and its diverse downstream real-world applications. Despite the huge success in learning graph representations, current GNN models have demonstrated their vulnerability to potentially existent adversarial examples on graph-structured data. Existing approaches are either limited to structure attacks or restricted to local information, urging for the design of a more general attack framework on graph classification, which faces significant challenges due to the complexity of generating local-node-level adversarial examples using the global-graph-level information. To address this "global-to-local" attack challenge, we present a novel and general framework to generate adversarial examples via manipulating graph structure and node features. Specifically, we make use of Graph Class Activation Mapping and its variant to produce node-level importance corresponding to the graph classification task. Then through a heuristic design of algorithms, we can perform both feature and structure attacks under unnoticeable perturbation budgets with the help of both node-level and subgraph-level importance. Experiments towards attacking four state-of-the-art graph classification models on six real-world benchmarks verify the flexibility and effectiveness of our framework.

The advent of satellite-borne machine learning hardware accelerators has enabled the on-board processing of payload data using machine learning techniques such as convolutional neural networks (CNN). A notable example is using a CNN to detect the presence of clouds in hyperspectral data captured on Earth observation (EO) missions, whereby only clear sky data is downlinked to conserve bandwidth. However, prior to deployment, new missions that employ new sensors will not have enough representative datasets to train a CNN model, while a model trained solely on data from previous missions will underperform when deployed to process the data on the new missions. This underperformance stems from the domain gap, i.e., differences in the underlying distributions of the data generated by the different sensors in previous and future missions. In this paper, we address the domain gap problem in the context of on-board hyperspectral cloud detection. Our main contributions lie in formulating new domain adaptation tasks that are motivated by a concrete EO mission, developing a novel algorithm for bandwidth-efficient supervised domain adaptation, and demonstrating test-time adaptation algorithms on space deployable neural network accelerators. Our contributions enable minimal data transmission to be invoked (e.g., only 1% of the weights in ResNet50) to achieve domain adaptation, thereby allowing more sophisticated CNN models to be deployed and updated on satellites without being hampered by domain gap and bandwidth limitations.

An anonymous dynamic network is a network of indistinguishable processes whose communication links may appear or disappear unpredictably over time. Previous research has shown that deterministically computing an arbitrary function of a multiset of input values given to these processes takes only a linear number of communication rounds (Di Luna-Viglietta, FOCS 2022). However, fast algorithms for anonymous dynamic networks rely on the construction and transmission of large data structures called "history trees", whose size is polynomial in the number of processes. This approach is unfeasible if the network is congested, and only messages of logarithmic size can be sent through its links. Observe that sending a large message piece by piece over several rounds is not in itself a solution, due to the anonymity of the processes combined with the dynamic nature of the network. Moreover, it is known that certain basic tasks such as all-to-all token dissemination (by means of single-token forwarding) require $\Omega(n^2/\log n)$ rounds in congested networks (Dutta et al., SODA 2013). In this work, we develop a series of practical and efficient techniques that make it possible to use history trees in congested anonymous dynamic networks. Among other applications, we show how to compute arbitrary functions in such networks in $O(n^3)$ communication rounds, greatly improving upon previous state-of-the-art algorithms for congested networks.

Voting mechanisms play a crucial role in decentralized governance of blockchain systems. Liquid democracy, also known as delegative voting, allows voters to vote directly or delegate their voting power to others, thereby contributing to the resolution of problems such as low voter turnout. In recent years, liquid democracy has been widely adopted by Delegated-Proof-of-Stake (DPoS) blockchains and implemented successfully on platforms with millions of users. However, little is known regarding the characteristics and actual effectiveness of liquid democracy in decentralized governance. This paper explored for the first time the practical implementation of liquid democracy in DPoS blockchain systems. Using actual data collected from two major DPoS blockchains, EOS and Steem, our study compared and evaluated the participation of different types of users of DPoS blockchain systems in liquid democracy, as well as extracting and analyzing the delegation chains and networks formed during the process of liquid democracy within the systems. We believe that the findings of this paper will contribute to further studies on the design and implementation of liquid democracy and other voting mechanisms in decentralized governance.

Large Language Models (LLMs) have shown promise in multiple software engineering tasks including code generation, code summarisation, test generation and code repair. Fault localisation is essential for facilitating automatic program debugging and repair, and is demonstrated as a highlight at ChatGPT-4's launch event. Nevertheless, there has been little work understanding LLMs' capabilities for fault localisation in large-scale open-source programs. To fill this gap, this paper presents an in-depth investigation into the capability of ChatGPT-3.5 and ChatGPT-4, the two state-of-the-art LLMs, on fault localisation. Using the widely-adopted Defects4J dataset, we compare the two LLMs with the existing fault localisation techniques. We also investigate the stability and explanation of LLMs in fault localisation, as well as how prompt engineering and the length of code context affect the fault localisation effectiveness. Our findings demonstrate that within a limited code context, ChatGPT-4 outperforms all the existing fault localisation methods. Additional error logs can further improve ChatGPT models' localisation accuracy and stability, with an average 46.9% higher accuracy over the state-of-the-art baseline SmartFL in terms of TOP-1 metric. However, performance declines dramatically when the code context expands to the class-level, with ChatGPT models' effectiveness becoming inferior to the existing methods overall. Additionally, we observe that ChatGPT's explainability is unsatisfactory, with an accuracy rate of only approximately 30%. These observations demonstrate that while ChatGPT can achieve effective fault localisation performance under certain conditions, evident limitations exist. Further research is imperative to fully harness the potential of LLMs like ChatGPT for practical fault localisation applications.

Smart contracts manage blockchain assets. While smart contracts embody business processes, their platforms are not process-aware. Mainstream smart contract programming languages such as Solidity do not have explicit notions of roles, action dependencies, and time. Instead, these concepts are implemented in program code. This makes it very hard to design and analyze smart contracts. We argue that DCR graphs are a suitable formalization tool for smart contracts because they explicitly and visually capture these features. We utilize this expressiveness to show that many common high-level design patterns in smart-contract applications can be naturally modeled this way. Applying these patterns shows that DCR graphs facilitate the development and analysis of correct and reliable smart contracts by providing a clear and easy-to-understand specification.

We introduce the new sage_acsv package for the SageMath computer algebra system, allowing users to rigorously compute asymptotics for a large variety of multivariate sequences with rational generating functions. Using Sage's support for exact computations over the algebraic number field, this package provides the first rigorous implementation of algorithms from the theory of analytic combinatorics in several variables.

Blockchain technology is developing using in reliable applications which can be designed to achieve decentralization and trustless. Based on the open network innovation theory, this paper proposes a technical intermediary management idea based on blockchain technology to improve the efficiency of technology intermediaries, providing accurate, reliable information and cutting cost for the market. This study demonstrates the advantage of blockchain to technology intermediaries. First, on a specific level, it can provide openness, transparency, decentralization and anonymity services. Second, the current industrial innovation elements are analyzed. blockchain improve the efficiency of technology intermediary, prevent risks and to make up for the shortcomings of traditional intermediaries. It has revolutionized the traditional technology intermediary. As this happens, it can revolutionize traditional technology intermediaries.

The task of detecting 3D objects in point cloud has a pivotal role in many real-world applications. However, 3D object detection performance is behind that of 2D object detection due to the lack of powerful 3D feature extraction methods. In order to address this issue, we propose to build a 3D backbone network to learn rich 3D feature maps by using sparse 3D CNN operations for 3D object detection in point cloud. The 3D backbone network can inherently learn 3D features from almost raw data without compressing point cloud into multiple 2D images and generate rich feature maps for object detection. The sparse 3D CNN takes full advantages of the sparsity in the 3D point cloud to accelerate computation and save memory, which makes the 3D backbone network achievable. Empirical experiments are conducted on the KITTI benchmark and results show that the proposed method can achieve state-of-the-art performance for 3D object detection.

北京阿比特科技有限公司