亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The robot operating system is the de-facto standard for designing and implementing robotics applications. Several previous works deal with the integration of heterogeneous accelerators into ROS-based applications. One of these approaches is ReconROS, which enables nodes to be completely mapped to hardware. The follow-up work fpgaDDS extends ReconROS by an intra-FPGA data distribution service to process topic-based communication between nodes entirely in hardware. However, the application of this approach is strictly limited to communication between nodes implemented in hardware only. This paper introduces gateways to close the gap between topic communication in hardware and software. Gateways aim to reduce data transfers between hardware and software by synchronizing a hardware-and software-mapped topic. As a result, data must be transferred only once compared to a separate data transmission for each subscribing hardware node in the baseline. Our measurements show significant speedups in multi-subscriber scenarios with large message sizes. From the conclusions of these measurements, we present a methodology for the communication mapping of ROS 2 computation graphs. In the evaluation, an autonomous driving real-world example benefits from the gateway and achieves a speedup of 1.4.

相關內容

The recent development of integrated sensing and communications (ISAC) technology offers new opportunities to meet high-throughput and low-latency communication as well as high-resolution localization requirements in vehicular networks. However, considering the limited transmit power of the road site units (RSUs) and the relatively small radar cross section (RCS) of vehicles with random reflection coefficients, the power of echo signals may be too weak to be utilized for effective target detection and tracking. Moreover, high-frequency signals usually suffer from large fading loss when penetrating vehicles, which seriously degrades the quality of communication services inside the vehicles. To handle this issue, we propose a novel sensing-assisted communication mechanism by employing an intelligent omni-surface (IOS) on the surface of vehicles to enhance both sensing and communication (S&C) performance. To this end, we first propose a two-stage ISAC protocol, including the joint S&C stage and the communication-only stage, to fulfill more efficient communication performance improvements benefited from sensing. The achievable communication rate maximization problem is formulated by jointly optimizing the transmit beamforming, the IOS phase shifts, and the duration of the joint S&C stage. However, solving this ISAC optimization problem is highly non-trivial since inaccurate estimation and measurement information renders the achievable rate lack of closed-form expression. To handle this issue, we first derive a closed-form expression of the achievable rate under uncertain location information, and then unveil a sufficient and necessary condition for the existence of the joint S&C stage to offer useful insights for practical system design. Moreover, two typical scenarios including interference-limited and noise-limited cases are analyzed.

Current class-incremental learning research mainly focuses on single-label classification tasks while multi-label class-incremental learning (MLCIL) with more practical application scenarios is rarely studied. Although there have been many anti-forgetting methods to solve the problem of catastrophic forgetting in class-incremental learning, these methods have difficulty in solving the MLCIL problem due to label absence and information dilution. In this paper, we propose a knowledge restore and transfer (KRT) framework for MLCIL, which includes a dynamic pseudo-label (DPL) module to restore the old class knowledge and an incremental cross-attention(ICA) module to save session-specific knowledge and transfer old class knowledge to the new model sufficiently. Besides, we propose a token loss to jointly optimize the incremental cross-attention module. Experimental results on MS-COCO and PASCAL VOC datasets demonstrate the effectiveness of our method for improving recognition performance and mitigating forgetting on multi-label class-incremental learning tasks.

Multi-robot systems have become very popular in recent years because of their wide spectrum of applications, ranging from surveillance to cooperative payload transportation. Model Predictive Control (MPC) is a promising controller for multi-robot control because of its preview capability and ability to handle constraints easily. The performance of the MPC widely depends on many parameters, among which the prediction horizon is the major contributor. Increasing the prediction horizon beyond a limit drastically increases the computation cost. Tuning the value of the prediction horizon can be very time-consuming, and the tuning process must be repeated for every task. Moreover, instead of using a fixed horizon for an entire task, a better balance between performance and computation cost can be established if different prediction horizons can be employed for every robot at each time step. Further, for such variable prediction horizon MPC for multiple robots, on-demand collision avoidance is the key requirement. We propose Versatile On-demand Collision Avoidance (VODCA) strategy to comply with the variable horizon model predictive control. We also present a framework for learning the prediction horizon for the multi-robot system as a function of the states of the robots using the Soft Actor-Critic (SAC) RL algorithm. The results are illustrated and validated numerically for different multi-robot tasks.

Edge-device co-inference refers to deploying well-trained artificial intelligent (AI) models at the network edge under the cooperation of devices and edge servers for providing ambient intelligent services. For enhancing the utilization of limited network resources in edge-device co-inference tasks from a systematic view, we propose a task-oriented scheme of integrated sensing, computation and communication (ISCC) in this work. In this system, all devices sense a target from the same wide view to obtain homogeneous noise-corrupted sensory data, from which the local feature vectors are extracted. All local feature vectors are aggregated at the server using over-the-air computation (AirComp) in a broadband channel with the orthogonal-frequency-division-multiplexing technique for suppressing the sensing and channel noise. The aggregated denoised global feature vector is further input to a server-side AI model for completing the downstream inference task. A novel task-oriented design criterion, called maximum minimum pair-wise discriminant gain, is adopted for classification tasks. It extends the distance of the closest class pair in the feature space, leading to a balanced and enhanced inference accuracy. Under this criterion, a problem of joint sensing power assignment, transmit precoding and receive beamforming is formulated. The challenge lies in three aspects: the coupling between sensing and AirComp, the joint optimization of all feature dimensions' AirComp aggregation over a broadband channel, and the complicated form of the maximum minimum pair-wise discriminant gain. To solve this problem, a task-oriented ISCC scheme with AirComp is proposed. Experiments based on a human motion recognition task are conducted to verify the advantages of the proposed scheme over the existing scheme and a baseline.

Sequential recommendation (SR) aims to model users dynamic preferences from a series of interactions. A pivotal challenge in user modeling for SR lies in the inherent variability of user preferences. An effective SR model is expected to capture both the long-term and short-term preferences exhibited by users, wherein the former can offer a comprehensive understanding of stable interests that impact the latter. To more effectively capture such information, we incorporate locality inductive bias into the Transformer by amalgamating its global attention mechanism with a local convolutional filter, and adaptively ascertain the mixing importance on a personalized basis through layer-aware adaptive mixture units, termed as AdaMCT. Moreover, as users may repeatedly browse potential purchases, it is expected to consider multiple relevant items concurrently in long-/short-term preferences modeling. Given that softmax-based attention may promote unimodal activation, we propose the Squeeze-Excitation Attention (with sigmoid activation) into SR models to capture multiple pertinent items (keys) simultaneously. Extensive experiments on three widely employed benchmarks substantiate the effectiveness and efficiency of our proposed approach. Source code is available at //github.com/juyongjiang/AdaMCT.

Deep reinforcement learning has achieved significant results in low-level controlling tasks. However, for some applications like autonomous driving and drone flying, it is difficult to control behavior stably since the agent may suddenly change its actions which often lowers the controlling system's efficiency, induces excessive mechanical wear, and causes uncontrollable, dangerous behavior to the vehicle. Recently, a method called conditioning for action policy smoothness (CAPS) was proposed to solve the problem of jerkiness in low-dimensional features for applications such as quadrotor drones. To cope with high-dimensional features, this paper proposes image-based regularization for action smoothness (I-RAS) for solving jerky control in autonomous miniature car racing. We also introduce a control based on impact ratio, an adaptive regularization weight to control the smoothness constraint, called IR control. In the experiment, an agent with I-RAS and IR control significantly improves the success rate from 59% to 95%. In the real-world-track experiment, the agent also outperforms other methods, namely reducing the average finish lap time, while also improving the completion rate even without real world training. This is also justified by an agent based on I-RAS winning the 2022 AWS DeepRacer Final Championship Cup.

Understanding code is challenging, especially when working in new and complex development environments. Code comments and documentation can help, but are typically scarce or hard to navigate. Large language models (LLMs) are revolutionizing the process of writing code. Can they do the same for helping understand it? In this study, we provide a first investigation of an LLM-based conversational UI built directly in the IDE that is geared towards code understanding. Our IDE plugin queries OpenAI's GPT-3.5 and GPT-4 models with four high-level requests without the user having to write explicit prompts: to explain a highlighted section of code, provide details of API calls used in the code, explain key domain-specific terms, and provide usage examples for an API. The plugin also allows for open-ended prompts, which are automatically contextualized to the LLM with the program being edited. We evaluate this system in a user study with 32 participants, which confirms that using our plugin can aid task completion more than web search. We additionally provide a thorough analysis of the ways developers use, and perceive the usefulness of, our system, among others finding that the usage and benefits differ significantly between students and professionals. We conclude that in-IDE prompt-less interaction with LLMs is a promising future direction for tool builders.

Link prediction on knowledge graphs (KGs) is a key research topic. Previous work mainly focused on binary relations, paying less attention to higher-arity relations although they are ubiquitous in real-world KGs. This paper considers link prediction upon n-ary relational facts and proposes a graph-based approach to this task. The key to our approach is to represent the n-ary structure of a fact as a small heterogeneous graph, and model this graph with edge-biased fully-connected attention. The fully-connected attention captures universal inter-vertex interactions, while with edge-aware attentive biases to particularly encode the graph structure and its heterogeneity. In this fashion, our approach fully models global and local dependencies in each n-ary fact, and hence can more effectively capture associations therein. Extensive evaluation verifies the effectiveness and superiority of our approach. It performs substantially and consistently better than current state-of-the-art across a variety of n-ary relational benchmarks. Our code is publicly available.

Recommender systems exploit interaction history to estimate user preference, having been heavily used in a wide range of industry applications. However, static recommendation models are difficult to answer two important questions well due to inherent shortcomings: (a) What exactly does a user like? (b) Why does a user like an item? The shortcomings are due to the way that static models learn user preference, i.e., without explicit instructions and active feedback from users. The recent rise of conversational recommender systems (CRSs) changes this situation fundamentally. In a CRS, users and the system can dynamically communicate through natural language interactions, which provide unprecedented opportunities to explicitly obtain the exact preference of users. Considerable efforts, spread across disparate settings and applications, have been put into developing CRSs. Existing models, technologies, and evaluation methods for CRSs are far from mature. In this paper, we provide a systematic review of the techniques used in current CRSs. We summarize the key challenges of developing CRSs into five directions: (1) Question-based user preference elicitation. (2) Multi-turn conversational recommendation strategies. (3) Dialogue understanding and generation. (4) Exploitation-exploration trade-offs. (5) Evaluation and user simulation. These research directions involve multiple research fields like information retrieval (IR), natural language processing (NLP), and human-computer interaction (HCI). Based on these research directions, we discuss some future challenges and opportunities. We provide a road map for researchers from multiple communities to get started in this area. We hope this survey helps to identify and address challenges in CRSs and inspire future research.

Search in social networks such as Facebook poses different challenges than in classical web search: besides the query text, it is important to take into account the searcher's context to provide relevant results. Their social graph is an integral part of this context and is a unique aspect of Facebook search. While embedding-based retrieval (EBR) has been applied in eb search engines for years, Facebook search was still mainly based on a Boolean matching model. In this paper, we discuss the techniques for applying EBR to a Facebook Search system. We introduce the unified embedding framework developed to model semantic embeddings for personalized search, and the system to serve embedding-based retrieval in a typical search system based on an inverted index. We discuss various tricks and experiences on end-to-end optimization of the whole system, including ANN parameter tuning and full-stack optimization. Finally, we present our progress on two selected advanced topics about modeling. We evaluated EBR on verticals for Facebook Search with significant metrics gains observed in online A/B experiments. We believe this paper will provide useful insights and experiences to help people on developing embedding-based retrieval systems in search engines.

北京阿比特科技有限公司