Methods for population estimation and inference have evolved over the past decade to allow for the incorporation of spatial information when using capture-recapture study designs. Traditional approaches to specifying spatial capture-recapture (SCR) models often rely on an individual-based detection function that decays as a detection location is farther from an individual's activity center. Traditional SCR models are intuitive because they incorporate mechanisms of animal space use based on their assumptions about activity centers. We generalize SCR models to accommodate a wide range of space use patterns, including for those individuals that may exhibit traditional elliptical utilization distributions. Our approach uses underlying Gaussian processes to characterize the space use of individuals. This allows us to account for multimodal space use patterns as well as nonlinear corridors and barriers to movement. We refer to this class of models as geostatistical capture-recapture (GCR) models. We adapt a recursive computing strategy to fit GCR models to data in stages, some of which can be parallelized. This technique facilitates implementation and leverages modern multicore and distributed computing environments. We demonstrate the application of GCR models by analyzing both simulated data and a data set involving capture histories of snowshoe hares in central Colorado, USA.
Reinforcement learning often needs to deal with the exponential growth of states and actions when exploring optimal control in high-dimensional spaces (often known as the curse of dimensionality). In this work, we address this issue by learning the inherent structure of action-wise similar MDP to appropriately balance the performance degradation versus sample/computational complexity. In particular, we partition the action spaces into multiple groups based on the similarity in transition distribution and reward function, and build a linear decomposition model to capture the difference between the intra-group transition kernel and the intra-group rewards. Both our theoretical analysis and experiments reveal a \emph{surprising and counter-intuitive result}: while a more refined grouping strategy can reduce the approximation error caused by treating actions in the same group as identical, it also leads to increased estimation error when the size of samples or the computation resources is limited. This finding highlights the grouping strategy as a new degree of freedom that can be optimized to minimize the overall performance loss. To address this issue, we formulate a general optimization problem for determining the optimal grouping strategy, which strikes a balance between performance loss and sample/computational complexity. We further propose a computationally efficient method for selecting a nearly-optimal grouping strategy, which maintains its computational complexity independent of the size of the action space.
Cox models with time-dependent coefficients and covariates are widely used in survival analysis. In high-dimensional settings, sparse regularization techniques are employed for variable selection, but existing methods for time-dependent Cox models lack flexibility in enforcing specific sparsity patterns (i.e., covariate structures). We propose a flexible framework for variable selection in time-dependent Cox models, accommodating complex selection rules. Our method can adapt to arbitrary grouping structures, including interaction selection, temporal, spatial, tree, and directed acyclic graph structures. It achieves accurate estimation with low false alarm rates. We develop the sox package, implementing a network flow algorithm for efficiently solving models with complex covariate structures. Sox offers a user-friendly interface for specifying grouping structures and delivers fast computation. Through examples, including a case study on identifying predictors of time to all-cause death in atrial fibrillation patients, we demonstrate the practical application of our method with specific selection rules.
Treatment effect estimation is of high-importance for both researchers and practitioners across many scientific and industrial domains. The abundance of observational data makes them increasingly used by researchers for the estimation of causal effects. However, these data suffer from biases, from several weaknesses, leading to inaccurate causal effect estimations, if not handled properly. Therefore, several machine learning techniques have been proposed, most of them focusing on leveraging the predictive power of neural network models to attain more precise estimation of causal effects. In this work, we propose a new methodology, named Nearest Neighboring Information for Causal Inference (NNCI), for integrating valuable nearest neighboring information on neural network-based models for estimating treatment effects. The proposed NNCI methodology is applied to some of the most well established neural network-based models for treatment effect estimation with the use of observational data. Numerical experiments and analysis provide empirical and statistical evidence that the integration of NNCI with state-of-the-art neural network models leads to considerably improved treatment effect estimations on a variety of well-known challenging benchmarks.
We propose a method for learning dynamical systems from high-dimensional empirical data that combines variational autoencoders and (spatio-)temporal attention within a framework designed to enforce certain scientifically-motivated invariances. We focus on the setting in which data are available from multiple different instances of a system whose underlying dynamical model is entirely unknown at the outset. The approach rests on a separation into an instance-specific encoding (capturing initial conditions, constants etc.) and a latent dynamics model that is itself universal across all instances/realizations of the system. The separation is achieved in an automated, data-driven manner and only empirical data are required as inputs to the model. The approach allows effective inference of system behaviour at any continuous time but does not require an explicit neural ODE formulation, which makes it efficient and highly scalable. We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets. The latter investigate learning the dynamics of complex systems based on finite data and show that the proposed approach can outperform state-of-the-art neural-dynamical models. We study also more general inductive bias in the context of transfer to data obtained under entirely novel system interventions. Overall, our results provide a promising new framework for efficiently learning dynamical models from heterogeneous data with potential applications in a wide range of fields including physics, medicine, biology and engineering.
We introduce the wavelet scattering spectra which provide non-Gaussian models of time-series having stationary increments. A complex wavelet transform computes signal variations at each scale. Dependencies across scales are captured by the joint correlation across time and scales of wavelet coefficients and their modulus. This correlation matrix is nearly diagonalized by a second wavelet transform, which defines the scattering spectra. We show that this vector of moments characterizes a wide range of non-Gaussian properties of multi-scale processes. We prove that self-similar processes have scattering spectra which are scale invariant. This property can be tested statistically on a single realization and defines a class of wide-sense self-similar processes. We build maximum entropy models conditioned by scattering spectra coefficients, and generate new time-series with a microcanonical sampling algorithm. Applications are shown for highly non-Gaussian financial and turbulence time-series.
Natural Language Inference (NLI) tasks involving temporal inference remain challenging for pre-trained language models (LMs). Although various datasets have been created for this task, they primarily focus on English and do not address the need for resources in other languages. It is unclear whether current LMs realize the generalization capacity for temporal inference across languages. In this paper, we present Jamp, a Japanese NLI benchmark focused on temporal inference. Our dataset includes a range of temporal inference patterns, which enables us to conduct fine-grained analysis. To begin the data annotation process, we create diverse inference templates based on the formal semantics test suites. We then automatically generate diverse NLI examples by using the Japanese case frame dictionary and well-designed templates while controlling the distribution of inference patterns and gold labels. We evaluate the generalization capacities of monolingual/multilingual LMs by splitting our dataset based on tense fragments (i.e., temporal inference patterns). Our findings demonstrate that LMs struggle with specific linguistic phenomena, such as habituality, indicating that there is potential for the development of more effective NLI models across languages.
In epidemiological studies, the capture-recapture (CRC) method is a powerful tool that can be used to estimate the number of diseased cases or potentially disease prevalence based on data from overlapping surveillance systems. Estimators derived from log-linear models are widely applied by epidemiologists when analyzing CRC data. The popularity of the log-linear model framework is largely associated with its accessibility and the fact that interaction terms can allow for certain types of dependency among data streams. In this work, we shed new light on significant pitfalls associated with the log-linear model framework in the context of CRC using real data examples and simulation studies. First, we demonstrate that the log-linear model paradigm is highly exclusionary. That is, it can exclude, by design, many possible estimates that are potentially consistent with the observed data. Second, we clarify the ways in which regularly used model selection metrics (e.g., information criteria) are fundamentally deceiving in the effort to select a best model in this setting. By focusing attention on these important cautionary points and on the fundamental untestable dependency assumption made when fitting a log-linear model to CRC data, we hope to improve the quality of and transparency associated with subsequent surveillance-based CRC estimates of case counts.
Graph mining applications, such as subgraph pattern matching and mining, are widely used in real-world domains such as bioinformatics, social network analysis, and computer vision. Such applications are considered a new class of data-intensive applications that generate massive irregular computation workloads and memory accesses, which degrade the performance significantly. Leveraging emerging hardware, such as process-in-memory (PIM) technology, could potentially accelerate such applications. In this paper, we propose PIMMiner, a high-performance PIM architecture graph mining framework. We first identify that current PIM architecture cannot be fully utilized by graph mining applications. Next, we propose a set of optimizations and interfaces that enhance the locality, and internal bandwidth utilization and reduce remote bank accesses and load imbalance through cohesive algorithm and architecture co-designs. We compare PIMMiner with several state-of-the-art graph mining frameworks and show that PIMMiner is able to outperform all of them significantly.
We introduce a framework for automatically defining and learning deep generative models with problem-specific structure. We tackle problem domains that are more traditionally solved by algorithms such as sorting, constraint satisfaction for Sudoku, and matrix factorization. Concretely, we train diffusion models with an architecture tailored to the problem specification. This problem specification should contain a graphical model describing relationships between variables, and often benefits from explicit representation of subcomputations. Permutation invariances can also be exploited. Across a diverse set of experiments we improve the scaling relationship between problem dimension and our model's performance, in terms of both training time and final accuracy. Our code can be found at //github.com/plai-group/gsdm.
Deep Learning has enabled remarkable progress over the last years on a variety of tasks, such as image recognition, speech recognition, and machine translation. One crucial aspect for this progress are novel neural architectures. Currently employed architectures have mostly been developed manually by human experts, which is a time-consuming and error-prone process. Because of this, there is growing interest in automated neural architecture search methods. We provide an overview of existing work in this field of research and categorize them according to three dimensions: search space, search strategy, and performance estimation strategy.