亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

This paper focuses on efficient landmark management in radar based simultaneous localization and mapping (SLAM). Landmark management is necessary in order to maintain a consistent map of the estimated landmarks relative to the estimate of the platform's pose. This task is particularly important when faced with multiple detections from the same landmark and/or dynamic environments where the location of a landmark can change. A further challenge with radar data is the presence of false detections. Accordingly, we propose a simple yet efficient rule based solution for radar SLAM landmark management. Assuming a low-dynamic environment, there are several steps in our solution: new landmarks need to be detected and included, false landmarks need to be identified and removed, and the consistency of the landmarks registered in the map needs to be maintained. To illustrate our solution, we run an extended Kalman filter SLAM algorithm in an environment containing both stationary and temporally stationary landmarks. Our simulation results demonstrate that the proposed solution is capable of reliably managing landmarks even when faced with false detections and multiple detections from the same landmark.

相關內容

即時定位與地圖構建(SLAM或Simultaneouslocalizationandmapping)是這樣一種技術:使得機器人和自動駕駛汽車等設備能在未知環境(沒有先驗知識的前提下)建立地圖,或者在已知環境(已給出該地圖的先驗知識)中能更新地圖,并保證這些設備能在同時追蹤它們的當前位置。

Word order choices during sentence production can be primed by preceding sentences. In this work, we test the DUAL MECHANISM hypothesis that priming is driven by multiple different sources. Using a Hindi corpus of text productions, we model lexical priming with an n-gram cache model and we capture more abstract syntactic priming with an adaptive neural language model. We permute the preverbal constituents of corpus sentences, and then use a logistic regression model to predict which sentences actually occurred in the corpus against artificially generated meaning-equivalent variants. Our results indicate that lexical priming and lexically-independent syntactic priming affect complementary sets of verb classes. By showing that different priming influences are separable from one another, our results support the hypothesis that multiple different cognitive mechanisms underlie priming.

Differentiable ARchiTecture Search (DARTS) is one of the most trending Neural Architecture Search (NAS) methods. It drastically reduces search cost by resorting to weight-sharing. However, it also dramatically reduces the search space, thus excluding potential promising architectures. In this article, we propose D-DARTS, a solution that addresses this problem by nesting neural networks at the cell level instead of using weight-sharing to produce more diversified and specialized architectures. Moreover, we introduce a novel algorithm that can derive deeper architectures from a few trained cells, increasing performance and saving computation time. In addition, we also present an alternative search space (DARTOpti) in which we optimize existing handcrafted architectures (e.g., ResNet) rather than starting from scratch. This approach is accompanied by a novel metric that measures the distance between architectures inside our custom search space. Our solution reaches competitive performance on multiple computer vision tasks. Code and pretrained models can be accessed at //github.com/aheuillet/D-DARTS.

Depth information is the foundation of perception, essential for autonomous driving, robotics, and other source-constrained applications. Promptly obtaining accurate and efficient depth information allows for a rapid response in dynamic environments. Sensor-based methods using LIDAR and RADAR obtain high precision at the cost of high power consumption, price, and volume. While due to advances in deep learning, vision-based approaches have recently received much attention and can overcome these drawbacks. In this work, we explore an extreme scenario in vision-based settings: estimate a depth map from one monocular image severely plagued by grid artifacts and blurry edges. To address this scenario, We first design a convolutional attention mechanism block (CAMB) which consists of channel attention and spatial attention sequentially and insert these CAMBs into skip connections. As a result, our novel approach can find the focus of current image with minimal overhead and avoid losses of depth features. Next, by combining the depth value, the gradients of X axis, Y axis and diagonal directions, and the structural similarity index measure (SSIM), we propose our novel loss function. Moreover, we utilize pixel blocks to accelerate the computation of the loss function. Finally, we show, through comprehensive experiments on two large-scale image datasets, i.e. KITTI and NYU-V2, that our method outperforms several representative baselines.

Traditional monocular Visual Simultaneous Localization and Mapping (vSLAM) systems can be divided into three categories: those that use features, those that rely on the image itself, and hybrid models. In the case of feature-based methods, new research has evolved to incorporate more information from their environment using geometric primitives beyond points, such as lines and planes. This is because in many environments, which are man-made environments, characterized as Manhattan world, geometric primitives such as lines and planes occupy most of the space in the environment. The exploitation of these schemes can lead to the introduction of algorithms capable of optimizing the trajectory of a Visual SLAM system and also helping to construct an exuberant map. Thus, we present a real-time monocular Visual SLAM system that incorporates real-time methods for line and VP extraction, as well as two strategies that exploit vanishing points to estimate the robot's translation and improve its rotation.Particularly, we build on ORB-SLAM2, which is considered the current state-of-the-art solution in terms of both accuracy and efficiency, and extend its formulation to handle lines and VPs to create two strategies the first optimize the rotation and the second refine the translation part from the known rotation. First, we extract VPs using a real-time method and use them for a global rotation optimization strategy. Second, we present a translation estimation method that takes advantage of last-stage rotation optimization to model a linear system. Finally, we evaluate our system on the TUM RGB-D benchmark and demonstrate that the proposed system achieves state-of-the-art results and runs in real time, and its performance remains close to the original ORB-SLAM2 system

Vision-based sensors have shown significant performance, accuracy, and efficiency gain in Simultaneous Localization and Mapping (SLAM) systems in recent years. In this regard, Visual Simultaneous Localization and Mapping (VSLAM) methods refer to the SLAM approaches that employ cameras for pose estimation and map generation. We can see many research works that demonstrated VSLAMs can outperform traditional methods, which rely only on a particular sensor, such as a Lidar, even with lower costs. VSLAM approaches utilize different camera types (e.g., monocular, stereo, and RGB-D), have been tested on various datasets (e.g., KITTI, TUM RGB-D, and EuRoC) and in dissimilar environments (e.g., indoors and outdoors), and employ multiple algorithms and methodologies to have a better understanding of the environment. The mentioned variations have made this topic popular for researchers and resulted in a wide range of VSLAMs methodologies. In this regard, the primary intent of this survey is to present the recent advances in VSLAM systems, along with discussing the existing challenges and trends. We have given an in-depth literature survey of forty-five impactful papers published in the domain of VSLAMs. We have classified these manuscripts by different characteristics, including the novelty domain, objectives, employed algorithms, and semantic level. We also discuss the current trends and future directions that may help researchers investigate them.

State estimation in complex illumination environments based on conventional visual-inertial odometry is a challenging task due to the severe visual degradation of the visual camera. The thermal infrared camera is capable of all-day time and is less affected by illumination variation. However, most existing visual data association algorithms are incompatible because the thermal infrared data contains large noise and low contrast. Motivated by the phenomenon that thermal radiation varies most significantly at the edges of objects, the study proposes an ETIO, which is the first edge-based monocular thermal-inertial odometry for robust localization in visually degraded environments. Instead of the raw image, we utilize the binarized image from edge extraction for pose estimation to overcome the poor thermal infrared image quality. Then, an adaptive feature tracking strategy ADT-KLT is developed for robust data association based on limited edge information and its distance distribution. Finally, a pose graph optimization performs real-time estimation over a sliding window of recent states by combining IMU pre-integration with reprojection error of all edge feature observations. We evaluated the performance of the proposed system on public datasets and real-world experiments and compared it against state-of-the-art methods. The proposed ETIO was verified with the ability to enable accurate and robust localization all-day time.

Generating realistic lip motion from audio to simulate speech production is critical for driving natural character animation. Previous research has shown that traditional metrics used to optimize and assess models for generating lip motion from speech are not a good indicator of subjective opinion of animation quality. Devising metrics that align with subjective opinion first requires understanding what impacts human perception of quality. In this work, we focus on the degree of articulation and run a series of experiments to study how articulation strength impacts human perception of lip motion accompanying speech. Specifically, we study how increasing under-articulated (dampened) and over-articulated (exaggerated) lip motion affects human perception of quality. We examine the impact of articulation strength on human perception when considering only lip motion, where viewers are presented with talking faces represented by landmarks, and in the context of embodied characters, where viewers are presented with photo-realistic videos. Our results show that viewers prefer over-articulated lip motion consistently more than under-articulated lip motion and that this preference generalizes across different speakers and embodiments.

In this paper a deep learning architecture is presented that can, in real time, detect the 2D locations of certain landmarks of physical tools, such as a hammer or screwdriver. To avoid the labor of manual labeling, the network is trained on synthetically generated data. Training computer vision models on computer generated images, while still achieving good accuracy on real images, is a challenge due to the difference in domain. The proposed method uses an advanced rendering method in combination with transfer learning and an intermediate supervision architecture to address this problem. It is shown that the model presented in this paper, named Intermediate Heatmap Model (IHM), generalizes to real images when trained on synthetic data. To avoid the need for an exact textured 3D model of the tool in question, it is shown that the model will generalize to an unseen tool when trained on a set of different 3D models of the same type of tool. IHM is compared to two existing approaches to keypoint detection and it is shown that it outperforms those at detecting tool landmarks, trained on synthetic data.

The explorative and iterative nature of developing and operating machine learning (ML) applications leads to a variety of artifacts, such as datasets, features, models, hyperparameters, metrics, software, configurations, and logs. In order to enable comparability, reproducibility, and traceability of these artifacts across the ML lifecycle steps and iterations, systems and tools have been developed to support their collection, storage, and management. It is often not obvious what precise functional scope such systems offer so that the comparison and the estimation of synergy effects between candidates are quite challenging. In this paper, we aim to give an overview of systems and platforms which support the management of ML lifecycle artifacts. Based on a systematic literature review, we derive assessment criteria and apply them to a representative selection of more than 60 systems and platforms.

We present a monocular Simultaneous Localization and Mapping (SLAM) using high level object and plane landmarks, in addition to points. The resulting map is denser, more compact and meaningful compared to point only SLAM. We first propose a high order graphical model to jointly infer the 3D object and layout planes from single image considering occlusions and semantic constraints. The extracted cuboid object and layout planes are further optimized in a unified SLAM framework. Objects and planes can provide more semantic constraints such as Manhattan and object supporting relationships compared to points. Experiments on various public and collected datasets including ICL NUIM and TUM mono show that our algorithm can improve camera localization accuracy compared to state-of-the-art SLAM and also generate dense maps in many structured environments.

北京阿比特科技有限公司