Inference time, model size, and accuracy are three key factors in deep model compression. Most of the existing work addresses these three key factors separately as it is difficult to optimize them all at the same time. For example, low-bit quantization aims at obtaining a faster model; weight sharing quantization aims at improving compression ratio and accuracy; and mixed-precision quantization aims at balancing accuracy and inference time. To simultaneously optimize bit-width, model size, and accuracy, we propose pruning ternary quantization (PTQ): a simple, effective, symmetric ternary quantization method. We integrate L2 normalization, pruning, and the weight decay term to reduce the weight discrepancy in the gradient estimator during quantization, thus producing highly compressed ternary weights. Our method brings the highest test accuracy and the highest compression ratio. For example, it produces a 939kb (49$\times$) 2bit ternary ResNet-18 model with only 4\% accuracy drop on the ImageNet dataset. It compresses 170MB Mask R-CNN to 5MB (34$\times$) with only 2.8\% average precision drop. Our method is verified on image classification, object detection/segmentation tasks with different network structures such as ResNet-18, ResNet-50, and MobileNetV2.
Super-Resolution is the technique to improve the quality of a low-resolution photo by boosting its plausible resolution. The computer vision community has extensively explored the area of Super-Resolution. However, previous Super-Resolution methods require vast amounts of data for training which becomes problematic in domains where very few low-resolution, high-resolution pairs might be available. One such area is statistical downscaling, where super-resolution is increasingly being used to obtain high-resolution climate information from low-resolution data. Acquiring high-resolution climate data is extremely expensive and challenging. To reduce the cost of generating high-resolution climate information, Super-Resolution algorithms should be able to train with a limited number of low-resolution, high-resolution pairs. This paper tries to solve the aforementioned problem by introducing a semi-supervised way to perform super-resolution that can generate sharp, high-resolution images with as few as 500 paired examples. The proposed semi-supervised technique can be used as a plug-and-play module with any supervised GAN-based Super-Resolution method to enhance its performance. We quantitatively and qualitatively analyze the performance of the proposed model and compare it with completely supervised methods as well as other unsupervised techniques. Comprehensive evaluations show the superiority of our method over other methods on different metrics. We also offer the applicability of our approach in statistical downscaling to obtain high-resolution climate images.
With the recently massive development in convolution neural networks, numerous lightweight CNN-based image super-resolution methods have been proposed for practical deployments on edge devices. However, most existing methods focus on one specific aspect: network or loss design, which leads to the difficulty of minimizing the model size. To address the issue, we conclude block devising, architecture searching, and loss design to obtain a more efficient SR structure. In this paper, we proposed an edge-enhanced feature distillation network, named EFDN, to preserve the high-frequency information under constrained resources. In detail, we build an edge-enhanced convolution block based on the existing reparameterization methods. Meanwhile, we propose edge-enhanced gradient loss to calibrate the reparameterized path training. Experimental results show that our edge-enhanced strategies preserve the edge and significantly improve the final restoration quality. Code is available at //github.com/icandle/EFDN.
Runtime and memory consumption are two important aspects for efficient image super-resolution (EISR) models to be deployed on resource-constrained devices. Recent advances in EISR exploit distillation and aggregation strategies with plenty of channel split and concatenation operations to make full use of limited hierarchical features. In contrast, sequential network operations avoid frequently accessing preceding states and extra nodes, and thus are beneficial to reducing the memory consumption and runtime overhead. Following this idea, we design our lightweight network backbone by mainly stacking multiple highly optimized convolution and activation layers and decreasing the usage of feature fusion. We propose a novel sequential attention branch, where every pixel is assigned an important factor according to local and global contexts, to enhance high-frequency details. In addition, we tailor the residual block for EISR and propose an enhanced residual block (ERB) to further accelerate the network inference. Finally, combining all the above techniques, we construct a fast and memory-efficient network (FMEN) and its small version FMEN-S, which runs 33% faster and reduces 74% memory consumption compared with the state-of-the-art EISR model: E-RFDN, the champion in AIM 2020 efficient super-resolution challenge. Besides, FMEN-S achieves the lowest memory consumption and the second shortest runtime in NTIRE 2022 challenge on efficient super-resolution. Code is available at //github.com/NJU-Jet/FMEN.
Model-based fault-tolerant control (FTC) often consists of two distinct steps: fault detection & isolation (FDI), and fault accommodation. In this work we investigate posing fault-tolerant control as a single Bayesian inference problem. Previous work showed that precision learning allows for stochastic FTC without an explicit fault detection step. While this leads to implicit fault recovery, information on sensor faults is not provided, which may be essential for triggering other impact-mitigation actions. In this paper, we introduce a precision-learning based Bayesian FTC approach and a novel beta residual for fault detection. Simulation results are presented, supporting the use of beta residual against competing approaches.
Introducing sparsity in a neural network has been an efficient way to reduce its complexity while keeping its performance almost intact. Most of the time, sparsity is introduced using a three-stage pipeline: 1) train the model to convergence, 2) prune the model according to some criterion, 3) fine-tune the pruned model to recover performance. The last two steps are often performed iteratively, leading to reasonable results but also to a time-consuming and complex process. In our work, we propose to get rid of the first step of the pipeline and to combine the two other steps in a single pruning-training cycle, allowing the model to jointly learn for the optimal weights while being pruned. We do this by introducing a novel pruning schedule, named One-Cycle Pruning, which starts pruning from the beginning of the training, and until its very end. Adopting such a schedule not only leads to better performing pruned models but also drastically reduces the training budget required to prune a model. Experiments are conducted on a variety of architectures (VGG-16 and ResNet-18) and datasets (CIFAR-10, CIFAR-100 and Caltech-101), and for relatively high sparsity values (80%, 90%, 95% of weights removed). Our results show that One-Cycle Pruning consistently outperforms commonly used pruning schedules such as One-Shot Pruning, Iterative Pruning and Automated Gradual Pruning, on a fixed training budget.
In this paper, we present a novel sensitivity-based filter pruning algorithm (SbF-Pruner) to learn the importance scores of filters of each layer end-to-end. Our method learns the scores from the filter weights, enabling it to account for the correlations between the filters of each layer. Moreover, by training the pruning scores of all layers simultaneously our method can account for layer interdependencies, which is essential to find a performant sparse sub-network. Our proposed method can train and generate a pruned network from scratch in a straightforward, one-stage training process without requiring a pretrained network. Ultimately, we do not need layer-specific hyperparameters and pre-defined layer budgets, since SbF-Pruner can implicitly determine the appropriate number of channels in each layer. Our experimental results on different network architectures suggest that SbF-Pruner outperforms advanced pruning methods. Notably, on CIFAR-10, without requiring a pretrained baseline network, we obtain 1.02% and 1.19% accuracy gain on ResNet56 and ResNet110, compared to the baseline reported for state-of-the-art pruning algorithms. This is while SbF-Pruner reduces parameter-count by 52.3% (for ResNet56) and 54% (for ResNet101), which is better than the state-of-the-art pruning algorithms with a high margin of 9.5% and 6.6%.
Convolutional neural networks (CNN) are the dominant deep neural network (DNN) architecture for computer vision. Recently, Transformer and multi-layer perceptron (MLP)-based models, such as Vision Transformer and MLP-Mixer, started to lead new trends as they showed promising results in the ImageNet classification task. In this paper, we conduct empirical studies on these DNN structures and try to understand their respective pros and cons. To ensure a fair comparison, we first develop a unified framework called SPACH which adopts separate modules for spatial and channel processing. Our experiments under the SPACH framework reveal that all structures can achieve competitive performance at a moderate scale. However, they demonstrate distinctive behaviors when the network size scales up. Based on our findings, we propose two hybrid models using convolution and Transformer modules. The resulting Hybrid-MS-S+ model achieves 83.9% top-1 accuracy with 63M parameters and 12.3G FLOPS. It is already on par with the SOTA models with sophisticated designs. The code and models will be made publicly available.
When learning tasks over time, artificial neural networks suffer from a problem known as Catastrophic Forgetting (CF). This happens when the weights of a network are overwritten during the training of a new task causing forgetting of old information. To address this issue, we propose MetA Reusable Knowledge or MARK, a new method that fosters weight reusability instead of overwriting when learning a new task. Specifically, MARK keeps a set of shared weights among tasks. We envision these shared weights as a common Knowledge Base (KB) that is not only used to learn new tasks, but also enriched with new knowledge as the model learns new tasks. Key components behind MARK are two-fold. On the one hand, a metalearning approach provides the key mechanism to incrementally enrich the KB with new knowledge and to foster weight reusability among tasks. On the other hand, a set of trainable masks provides the key mechanism to selectively choose from the KB relevant weights to solve each task. By using MARK, we achieve state of the art results in several popular benchmarks, surpassing the best performing methods in terms of average accuracy by over 10% on the 20-Split-MiniImageNet dataset, while achieving almost zero forgetfulness using 55% of the number of parameters. Furthermore, an ablation study provides evidence that, indeed, MARK is learning reusable knowledge that is selectively used by each task.
The growing energy and performance costs of deep learning have driven the community to reduce the size of neural networks by selectively pruning components. Similarly to their biological counterparts, sparse networks generalize just as well, if not better than, the original dense networks. Sparsity can reduce the memory footprint of regular networks to fit mobile devices, as well as shorten training time for ever growing networks. In this paper, we survey prior work on sparsity in deep learning and provide an extensive tutorial of sparsification for both inference and training. We describe approaches to remove and add elements of neural networks, different training strategies to achieve model sparsity, and mechanisms to exploit sparsity in practice. Our work distills ideas from more than 300 research papers and provides guidance to practitioners who wish to utilize sparsity today, as well as to researchers whose goal is to push the frontier forward. We include the necessary background on mathematical methods in sparsification, describe phenomena such as early structure adaptation, the intricate relations between sparsity and the training process, and show techniques for achieving acceleration on real hardware. We also define a metric of pruned parameter efficiency that could serve as a baseline for comparison of different sparse networks. We close by speculating on how sparsity can improve future workloads and outline major open problems in the field.
Since hardware resources are limited, the objective of training deep learning models is typically to maximize accuracy subject to the time and memory constraints of training and inference. We study the impact of model size in this setting, focusing on Transformer models for NLP tasks that are limited by compute: self-supervised pretraining and high-resource machine translation. We first show that even though smaller Transformer models execute faster per iteration, wider and deeper models converge in significantly fewer steps. Moreover, this acceleration in convergence typically outpaces the additional computational overhead of using larger models. Therefore, the most compute-efficient training strategy is to counterintuitively train extremely large models but stop after a small number of iterations. This leads to an apparent trade-off between the training efficiency of large Transformer models and the inference efficiency of small Transformer models. However, we show that large models are more robust to compression techniques such as quantization and pruning than small models. Consequently, one can get the best of both worlds: heavily compressed, large models achieve higher accuracy than lightly compressed, small models.