Despite recent advancements, audio-text models still lag behind their image-text counterparts in scale and performance. In this paper, we propose to improve both the data scale and the training procedure of audio-text contrastive models. Specifically, we craft a large-scale audio-text dataset containing 13,000 hours of text-labeled audio, using pretrained language models to process noisy text descriptions and automatic captioning to obtain text descriptions for unlabeled audio samples. We first train on audio-only data with a masked autoencoder (MAE) objective, which allows us to benefit from the scalability of unlabeled audio datasets. We then train a contrastive model with an auxiliary captioning objective with the audio encoder initialized from the MAE model. Our final model, which we name Cacophony, achieves state-of-the-art performance on audio-text retrieval tasks, and exhibits competitive results on the HEAR benchmark and other downstream tasks such as zero-shot classification.
The advent of AI-Generated Content (AIGC) has spurred research into automated video generation to streamline conventional processes. However, automating storytelling video production, particularly for customized narratives, remains challenging due to the complexity of maintaining subject consistency across shots. While existing approaches like Mora and AesopAgent integrate multiple agents for Story-to-Video (S2V) generation, they fall short in preserving protagonist consistency and supporting Customized Storytelling Video Generation (CSVG). To address these limitations, we propose StoryAgent, a multi-agent framework designed for CSVG. StoryAgent decomposes CSVG into distinct subtasks assigned to specialized agents, mirroring the professional production process. Notably, our framework includes agents for story design, storyboard generation, video creation, agent coordination, and result evaluation. Leveraging the strengths of different models, StoryAgent enhances control over the generation process, significantly improving character consistency. Specifically, we introduce a customized Image-to-Video (I2V) method, LoRA-BE, to enhance intra-shot temporal consistency, while a novel storyboard generation pipeline is proposed to maintain subject consistency across shots. Extensive experiments demonstrate the effectiveness of our approach in synthesizing highly consistent storytelling videos, outperforming state-of-the-art methods. Our contributions include the introduction of StoryAgent, a versatile framework for video generation tasks, and novel techniques for preserving protagonist consistency.
Recent AI advances have enabled multi-modal systems to model and translate diverse information spaces. Extending beyond text and vision, we introduce OneProt, a multi-modal AI for proteins that integrates structural, sequence, alignment, and binding site data. Using the ImageBind framework, OneProt aligns the latent spaces of modality encoders along protein sequences. It demonstrates strong performance in retrieval tasks and surpasses state-of-the-art methods in various downstream tasks, including metal ion binding classification, gene-ontology annotation, and enzyme function prediction. This work expands multi-modal capabilities in protein models, paving the way for applications in drug discovery, biocatalytic reaction planning, and protein engineering.
Empirical evidence suggests that LLMs exhibit spontaneous cross-lingual alignment. Our findings suggest that although LLMs also demonstrate promising cross-lingual alignment in Information Extraction, there remains significant imbalance across languages, revealing an underlying deficiency in the IE alignment. To address this issue, we propose AlignXIE, a powerful code-based LLM that significantly enhances cross-lingual IE alignment through two strategies. Firstly, AlignXIE formulates IE across different languages, especially non-English ones, as code generation tasks, standardizing the representation of various schemas using Python classes to ensure consistency of the same ontology in different languages and align the schema. Secondly, it incorporates an IE cross-lingual alignment phase through a translated instance prediction task proposed in this paper to align the extraction process, utilizing ParallelNER, an IE bilingual parallel dataset with 257,190 samples, generated by our proposed LLM-based automatic pipeline for IE parallel data construction, with manual annotation to ensure quality. Ultimately, we obtain AlignXIE through multilingual IE instruction tuning. Although without training in 9 unseen languages, AlignXIE surpasses ChatGPT by $30.17\%$ and SoTA by $20.03\%$, thereby demonstrating superior cross-lingual IE capabilities. Comprehensive evaluations on 63 IE benchmarks in Chinese and English under various settings, demonstrate that AlignXIE significantly enhances cross-lingual and multilingual IE through boosting the IE alignment.
Existing benchmarks for evaluating foundation models mainly focus on single-document, text-only tasks. However, they often fail to fully capture the complexity of research workflows, which typically involve interpreting non-textual data and gathering information across multiple documents. To address this gap, we introduce M3SciQA, a multi-modal, multi-document scientific question answering benchmark designed for a more comprehensive evaluation of foundation models. M3SciQA consists of 1,452 expert-annotated questions spanning 70 natural language processing paper clusters, where each cluster represents a primary paper along with all its cited documents, mirroring the workflow of comprehending a single paper by requiring multi-modal and multi-document data. With M3SciQA, we conduct a comprehensive evaluation of 18 foundation models. Our results indicate that current foundation models still significantly underperform compared to human experts in multi-modal information retrieval and in reasoning across multiple scientific documents. Additionally, we explore the implications of these findings for the future advancement of applying foundation models in multi-modal scientific literature analysis.
Answering reasoning-based complex questions over text and hybrid sources, including tables, is a challenging task. Recent advances in large language models (LLMs) have enabled in-context learning (ICL), allowing LLMs to acquire proficiency in a specific task using only a few demonstration samples (exemplars). A critical challenge in ICL is the selection of optimal exemplars, which can be either task-specific (static) or test-example-specific (dynamic). Static exemplars provide faster inference times and increased robustness across a distribution of test examples. In this paper, we propose an algorithm for static exemplar subset selection for complex reasoning tasks. We introduce EXPLORA, a novel exploration method designed to estimate the parameters of the scoring function, which evaluates exemplar subsets without incorporating confidence information. EXPLORA significantly reduces the number of LLM calls to ~11% of those required by state-of-the-art methods and achieves a substantial performance improvement of 12.24%. We open-source our code and data (//github.com/kiranpurohit/EXPLORA).
Despite recent advances in UNet-based image editing, methods for shape-aware object editing in high-resolution images are still lacking. Compared to UNet, Diffusion Transformers (DiT) demonstrate superior capabilities to effectively capture the long-range dependencies among patches, leading to higher-quality image generation. In this paper, we propose DiT4Edit, the first Diffusion Transformer-based image editing framework. Specifically, DiT4Edit uses the DPM-Solver inversion algorithm to obtain the inverted latents, reducing the number of steps compared to the DDIM inversion algorithm commonly used in UNet-based frameworks. Additionally, we design unified attention control and patches merging, tailored for transformer computation streams. This integration allows our framework to generate higher-quality edited images faster. Our design leverages the advantages of DiT, enabling it to surpass UNet structures in image editing, especially in high-resolution and arbitrary-size images. Extensive experiments demonstrate the strong performance of DiT4Edit across various editing scenarios, highlighting the potential of Diffusion Transformers in supporting image editing.
Generating realistic and diverse layouts of furnished indoor 3D scenes unlocks multiple interactive applications impacting a wide range of industries. The inherent complexity of object interactions, the limited amount of available data and the requirement to fulfill spatial constraints all make generative modeling for 3D scene synthesis and arrangement challenging. Current methods address these challenges autoregressively or by using off-the-shelf diffusion objectives by simultaneously predicting all attributes without 3D reasoning considerations. In this paper, we introduce DeBaRA, a score-based model specifically tailored for precise, controllable and flexible arrangement generation in a bounded environment. We argue that the most critical component of a scene synthesis system is to accurately establish the size and position of various objects within a restricted area. Based on this insight, we propose a lightweight conditional score-based model designed with 3D spatial awareness at its core. We demonstrate that by focusing on spatial attributes of objects, a single trained DeBaRA model can be leveraged at test time to perform several downstream applications such as scene synthesis, completion and re-arrangement. Further, we introduce a novel Self Score Evaluation procedure so it can be optimally employed alongside external LLM models. We evaluate our approach through extensive experiments and demonstrate significant improvement upon state-of-the-art approaches in a range of scenarios.
Controllable text-to-image (T2I) diffusion models have shown impressive performance in generating high-quality visual content through the incorporation of various conditions. Current methods, however, exhibit limited performance when guided by skeleton human poses, especially in complex pose conditions such as side or rear perspectives of human figures. To address this issue, we present Stable-Pose, a novel adapter model that introduces a coarse-to-fine attention masking strategy into a vision Transformer (ViT) to gain accurate pose guidance for T2I models. Stable-Pose is designed to adeptly handle pose conditions within pre-trained Stable Diffusion, providing a refined and efficient way of aligning pose representation during image synthesis. We leverage the query-key self-attention mechanism of ViTs to explore the interconnections among different anatomical parts in human pose skeletons. Masked pose images are used to smoothly refine the attention maps based on target pose-related features in a hierarchical manner, transitioning from coarse to fine levels. Additionally, our loss function is formulated to allocate increased emphasis to the pose region, thereby augmenting the model's precision in capturing intricate pose details. We assessed the performance of Stable-Pose across five public datasets under a wide range of indoor and outdoor human pose scenarios. Stable-Pose achieved an AP score of 57.1 in the LAION-Human dataset, marking around 13% improvement over the established technique ControlNet. The project link and code is available at //github.com/ai-med/StablePose.
Recent years have witnessed remarkable progress made in large language models (LLMs). Such advancements, while garnering significant attention, have concurrently elicited various concerns. The potential of these models is undeniably vast; however, they may yield texts that are imprecise, misleading, or even detrimental. Consequently, it becomes paramount to employ alignment techniques to ensure these models to exhibit behaviors consistent with human values. This survey endeavors to furnish an extensive exploration of alignment methodologies designed for LLMs, in conjunction with the extant capability research in this domain. Adopting the lens of AI alignment, we categorize the prevailing methods and emergent proposals for the alignment of LLMs into outer and inner alignment. We also probe into salient issues including the models' interpretability, and potential vulnerabilities to adversarial attacks. To assess LLM alignment, we present a wide variety of benchmarks and evaluation methodologies. After discussing the state of alignment research for LLMs, we finally cast a vision toward the future, contemplating the promising avenues of research that lie ahead. Our aspiration for this survey extends beyond merely spurring research interests in this realm. We also envision bridging the gap between the AI alignment research community and the researchers engrossed in the capability exploration of LLMs for both capable and safe LLMs.
Diffusion models (DMs) have shown great potential for high-quality image synthesis. However, when it comes to producing images with complex scenes, how to properly describe both image global structures and object details remains a challenging task. In this paper, we present Frido, a Feature Pyramid Diffusion model performing a multi-scale coarse-to-fine denoising process for image synthesis. Our model decomposes an input image into scale-dependent vector quantized features, followed by a coarse-to-fine gating for producing image output. During the above multi-scale representation learning stage, additional input conditions like text, scene graph, or image layout can be further exploited. Thus, Frido can be also applied for conditional or cross-modality image synthesis. We conduct extensive experiments over various unconditioned and conditional image generation tasks, ranging from text-to-image synthesis, layout-to-image, scene-graph-to-image, to label-to-image. More specifically, we achieved state-of-the-art FID scores on five benchmarks, namely layout-to-image on COCO and OpenImages, scene-graph-to-image on COCO and Visual Genome, and label-to-image on COCO. Code is available at //github.com/davidhalladay/Frido.