Cross-device Federated Learning (FL) faces significant challenges where low-end clients that could potentially make unique contributions are excluded from training large models due to their resource bottlenecks. Recent research efforts have focused on model-heterogeneous FL, by extracting reduced-size models from the global model and applying them to local clients accordingly. Despite the empirical success, general theoretical guarantees of convergence on this method remain an open question. In this paper, we present a unifying framework for heterogeneous FL algorithms with online model extraction and provide a general convergence analysis. In particular, we prove that under certain sufficient conditions and for both IID and non-IID data, these algorithms converge to a stationary point of standard FL for general smooth cost functions. Moreover, we illuminate two key factors impacting its convergence: model-extraction noise and minimum coverage index, advocating a joint design of local model extraction for efficient heterogeneous FL.
Internet of Things (IoT) applications are composed of massive quantities of resource-limited devices that collect sensitive data with long-term operational and security requirements. With the threat of emerging quantum computers, Post-Quantum Cryptography (PQC) is a critical requirement for IoTs. In particular, digital signatures offer scalable authentication with non-repudiation and are an essential tool for IoTs. However, as seen in NIST PQC standardization, post-quantum signatures are extremely costly for resource-limited IoTs. Hence, there is a significant need for quantum-safe signatures that respect the processing, memory, and bandwidth limitations of IoTs. In this paper, we created a new lightweight quantum-safe digital signature referred to as INFinity-HORS (INF-HORS), which is (to the best of our knowledge) the first signer-optimal hash-based signature with (polynomially) unbounded signing capability. INF-HORS enables a verifier to non-interactively construct one-time public keys from a master public key via encrypted function evaluations. This strategy avoids the performance bottleneck of hash-based standards (e.g., SPHINCS+) by eliminating hyper-tree structures. It also does not require a trusted party or non-colliding servers to distribute public keys. Our performance analysis confirms that INF-HORS is magnitudes of times more signer computation efficient than selected NIST PQC schemes (e.g., SPHINCS+, Dilithium, Falcon) with a small memory footprint.
Large language and vision models have transformed how social movements scholars identify protest and extract key protest attributes from multi-modal data such as texts, images, and videos. This article documents how we fine-tuned two large pretrained transformer models, including longformer and swin-transformer v2, to infer potential protests in news articles using textual and imagery data. First, the longformer model was fine-tuned using the Dynamic of Collective Action (DoCA) Corpus. We matched the New York Times articles with the DoCA database to obtain a training dataset for downstream tasks. Second, the swin-transformer v2 models was trained on UCLA-protest imagery data. UCLA-protest project contains labeled imagery data with information such as protest, violence, and sign. Both fine-tuned models will be available via \url{//github.com/Joshzyj/llvms4protest}. We release this short technical report for social movement scholars who are interested in using LLVMs to infer protests in textual and imagery data.
Achieving high synchronization in the synthesis of realistic, speech-driven talking head videos presents a significant challenge. Traditional Generative Adversarial Networks (GAN) struggle to maintain consistent facial identity, while Neural Radiance Fields (NeRF) methods, although they can address this issue, often produce mismatched lip movements, inadequate facial expressions, and unstable head poses. A lifelike talking head requires synchronized coordination of subject identity, lip movements, facial expressions, and head poses. The absence of these synchronizations is a fundamental flaw, leading to unrealistic and artificial outcomes. To address the critical issue of synchronization, identified as the "devil" in creating realistic talking heads, we introduce SyncTalk. This NeRF-based method effectively maintains subject identity, enhancing synchronization and realism in talking head synthesis. SyncTalk employs a Face-Sync Controller to align lip movements with speech and innovatively uses a 3D facial blendshape model to capture accurate facial expressions. Our Head-Sync Stabilizer optimizes head poses, achieving more natural head movements. The Portrait-Sync Generator restores hair details and blends the generated head with the torso for a seamless visual experience. Extensive experiments and user studies demonstrate that SyncTalk outperforms state-of-the-art methods in synchronization and realism. We recommend watching the supplementary video: //ziqiaopeng.github.io/synctalk
Although the expenses associated with DNA sequencing have been rapidly decreasing, the current cost of sequencing information stands at roughly $120/GB, which is dramatically more expensive than reading from existing archival storage solutions today. In this work, we aim to reduce not only the cost but also the latency of DNA storage by initiating the study of the DNA coverage depth problem, which aims to reduce the required number of reads to retrieve information from the storage system. Under this framework, our main goal is to understand the effect of error-correcting codes and retrieval algorithms on the required sequencing coverage depth. We establish that the expected number of reads that are required for information retrieval is minimized when the channel follows a uniform distribution. We also derive upper and lower bounds on the probability distribution of this number of required reads and provide a comprehensive upper and lower bound on its expected value. We further prove that for a noiseless channel and uniform distribution, MDS codes are optimal in terms of minimizing the expected number of reads. Additionally, we study the DNA coverage depth problem under the random-access setup, in which the user aims to retrieve just a specific information unit from the entire DNA storage system. We prove that the expected retrieval time is at least k for [n,k] MDS codes as well as for other families of codes. Furthermore, we present explicit code constructions that achieve expected retrieval times below k and evaluate their performance through analytical methods and simulations. Lastly, we provide lower bounds on the maximum expected retrieval time. Our findings offer valuable insights for reducing the cost and latency of DNA storage.
Graph plays a significant role in representing and analyzing complex relationships in real-world applications such as citation networks, social networks, and biological data. Recently, Large Language Models (LLMs), which have achieved tremendous success in various domains, have also been leveraged in graph-related tasks to surpass traditional Graph Neural Networks (GNNs) based methods and yield state-of-the-art performance. In this survey, we first present a comprehensive review and analysis of existing methods that integrate LLMs with graphs. First of all, we propose a new taxonomy, which organizes existing methods into three categories based on the role (i.e., enhancer, predictor, and alignment component) played by LLMs in graph-related tasks. Then we systematically survey the representative methods along the three categories of the taxonomy. Finally, we discuss the remaining limitations of existing studies and highlight promising avenues for future research. The relevant papers are summarized and will be consistently updated at: //github.com/yhLeeee/Awesome-LLMs-in-Graph-tasks.
This paper presents a novel probabilistic detection scheme called Cooperative Statistical Detection (CSD) for abnormal node detection while defending against adversarial attacks in cluster-tree networks. The CSD performs a two-phase process: 1) designing a likelihood ratio test (LRT) for a non-root node at its children from the perspective of packet loss; 2) making an overall decision at the root node based on the aggregated detection data of the nodes over tree branches. In most adversarial scenarios, malicious children knowing the detection policy can generate falsified data to protect the abnormal parent from being detected or frame its normal parent as an anomalous node. To resolve this issue, a modified Z-score-based falsification-resistant mechanism is presented in the CSD to remove untrustworthy information. Through theoretical analysis, we show that the LRT-based method achieves perfect detection, i.e., both the false alarm and missed detection probabilities decay exponentially to zero. Furthermore, the optimal removal threshold of the modified Z-score method is derived for falsifications with uncertain strategies and guarantees perfect detection of the CSD. As our simulation results show, the CSD approach is robust to falsifications and can rapidly reach $99\%$ detection accuracy, even in existing adversarial scenarios, which outperforms state-of-the-art technology.
Current techniques face difficulties in generating motions from intricate semantic descriptions, primarily due to insufficient semantic annotations in datasets and weak contextual understanding. To address these issues, we present SemanticBoost, a novel framework that tackles both challenges simultaneously. Our framework comprises a Semantic Enhancement module and a Context-Attuned Motion Denoiser (CAMD). The Semantic Enhancement module extracts supplementary semantics from motion data, enriching the dataset's textual description and ensuring precise alignment between text and motion data without depending on large language models. On the other hand, the CAMD approach provides an all-encompassing solution for generating high-quality, semantically consistent motion sequences by effectively capturing context information and aligning the generated motion with the given textual descriptions. Distinct from existing methods, our approach can synthesize accurate orientational movements, combined motions based on specific body part descriptions, and motions generated from complex, extended sentences. Our experimental results demonstrate that SemanticBoost, as a diffusion-based method, outperforms auto-regressive-based techniques, achieving cutting-edge performance on the Humanml3D dataset while maintaining realistic and smooth motion generation quality.
Compute-in-memory (CIM) accelerators built upon non-volatile memory (NVM) devices excel in energy efficiency and latency when performing Deep Neural Network (DNN) inference, thanks to their in-situ data processing capability. However, the stochastic nature and intrinsic variations of NVM devices often result in performance degradation in DNN inference. Introducing these non-ideal device behaviors during DNN training enhances robustness, but drawbacks include limited accuracy improvement, reduced prediction confidence, and convergence issues. This arises from a mismatch between the deterministic training and non-deterministic device variations, as such training, though considering variations, relies solely on the model's final output. In this work, we draw inspiration from the control theory and propose a novel training concept: Negative Feedback Training (NFT) leveraging the multi-scale noisy information captured from network. We develop two specific NFT instances, Oriented Variational Forward (OVF) and Intermediate Representation Snapshot (IRS). Extensive experiments show that our methods outperform existing state-of-the-art methods with up to a 46.71% improvement in inference accuracy while reducing epistemic uncertainty, boosting output confidence, and improving convergence probability. Their effectiveness highlights the generality and practicality of our NFT concept in enhancing DNN robustness against device variations.
While large language models (LLMs) have demonstrated remarkable capabilities across a range of downstream tasks, a significant concern revolves around their propensity to exhibit hallucinations: LLMs occasionally generate content that diverges from the user input, contradicts previously generated context, or misaligns with established world knowledge. This phenomenon poses a substantial challenge to the reliability of LLMs in real-world scenarios. In this paper, we survey recent efforts on the detection, explanation, and mitigation of hallucination, with an emphasis on the unique challenges posed by LLMs. We present taxonomies of the LLM hallucination phenomena and evaluation benchmarks, analyze existing approaches aiming at mitigating LLM hallucination, and discuss potential directions for future research.
This work considers the question of how convenient access to copious data impacts our ability to learn causal effects and relations. In what ways is learning causality in the era of big data different from -- or the same as -- the traditional one? To answer this question, this survey provides a comprehensive and structured review of both traditional and frontier methods in learning causality and relations along with the connections between causality and machine learning. This work points out on a case-by-case basis how big data facilitates, complicates, or motivates each approach.