亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

In this work we introduce $\nu^2$-Flows, an extension of the $\nu$-Flows method to final states containing multiple neutrinos. The architecture can natively scale for all combinations of object types and multiplicities in the final state for any desired neutrino multiplicities. In $t\bar{t}$ dilepton events, the momenta of both neutrinos and correlations between them are reconstructed more accurately than when using the most popular standard analytical techniques, and solutions are found for all events. Inference time is significantly faster than competing methods, and can be reduced further by evaluating in parallel on graphics processing units. We apply $\nu^2$-Flows to $t\bar{t}$ dilepton events and show that the per-bin uncertainties in unfolded distributions is much closer to the limit of performance set by perfect neutrino reconstruction than standard techniques. For the chosen double differential observables $\nu^2$-Flows results in improved statistical precision for each bin by a factor of 1.5 to 2 in comparison to the Neutrino Weighting method and up to a factor of four in comparison to the Ellipse approach.

相關內容

In this paper, we derive explicit second-order necessary and sufficient optimality conditions of a local minimizer to an optimal control problem for a quasilinear second-order partial differential equation with a piecewise smooth but not differentiable nonlinearity in the leading term. The key argument rests on the analysis of level sets of the state. Specifically, we show that if a function vanishes on the boundary and its the gradient is different from zero on a level set, then this set decomposes into finitely many closed simple curves. Moreover, the level sets depend continuously on the functions defining these sets. We also prove the continuity of the integrals on the level sets. In particular, Green's first identity is shown to be applicable on an open set determined by two functions with nonvanishing gradients. In the second part to this paper, the explicit sufficient second-order conditions will be used to derive error estimates for a finite-element discretization of the control problem.

We analyse a numerical scheme for a system arising from a novel description of the standard elastic--perfectly plastic response. The elastic--perfectly plastic response is described via rate-type equations that do not make use of the standard elastic-plastic decomposition, and the model does not require the use of variational inequalities. Furthermore, the model naturally includes the evolution equation for temperature. We present a low order discretisation based on the finite element method. Under certain restrictions on the mesh we subsequently prove the existence of discrete solutions, and we discuss the stability properties of the numerical scheme. The analysis is supplemented with computational examples.

We consider a one-dimensional nonlocal hyperbolic model introduced to describe the formation and movement of self-organizing collectives of animals in homogeneous 1D environments. Previous research has shown that this model exhibits a large number of complex spatial and spatiotemporal aggregation patterns, as evidenced by numerical simulations and weakly nonlinear analysis. In this study, we focus on a particular type of localised patterns with odd/even/no symmetries (which are usually part of snaking solution branches with different symmetries that form complex bifurcation structures called snake-and-ladder bifurcations). To numerically investigate the bifurcating solution branches (to eventually construct the full bifurcating structures), we first need to understand the numerical issues that could appear when using different numerical schemes. To this end, in this study, we consider ten different numerical schemes (the upwind scheme, the MacCormack scheme, the Fractional-Step method, and the Quasi-Steady Wave-Propagation algorithm, combining them with high-resolution methods), while paying attention to the preservation of the solution symmetries with all these schemes. We show several numerical issues: first, we observe the presence of two distinct types of numerical solutions (with different symmetries) that exhibit very small errors; second, in some cases, none of the investigated numerical schemes converge, posing a challenge for the development of numerical continuation algorithms for nonlocal hyperbolic systems; lastly, the choice of the numerical schemes, as well as their corresponding parameters such as time-space steps, exert a significant influence on the type and symmetry of bifurcating solutions.

This paper presents a novel approach to construct regularizing operators for severely ill-posed Fredholm integral equations of the first kind by introducing parametrized discretization. The optimal values of discretization and regularization parameters are computed simultaneously by solving a minimization problem formulated based on a regularization parameter search criterion. The effectiveness of the proposed approach is demonstrated through examples of noisy Laplace transform inversions and the deconvolution of nuclear magnetic resonance relaxation data.

In general, high order splitting methods suffer from an order reduction phenomena when applied to the time integration of partial differential equations with non-periodic boundary conditions. In the last decade, there were introduced several modifications to prevent the second order Strang Splitting method from such a phenomena. In this article, inspired by these recent corrector techniques, we introduce a splitting method of order three for a class of semilinear parabolic problems that avoids order reduction in the context of non-periodic boundary conditions. We give a proof for the third order convergence of the method in a simplified linear setting and confirm the result by numerical experiments. Moreover, we show numerically that the high order convergence persists for an order four variant of a splitting method, and also for a nonlinear source term.

In this paper, we present a discontinuity and cusp capturing physics-informed neural network (PINN) to solve Stokes equations with a piecewise-constant viscosity and singular force along an interface. We first reformulate the governing equations in each fluid domain separately and replace the singular force effect with the traction balance equation between solutions in two sides along the interface. Since the pressure is discontinuous and the velocity has discontinuous derivatives across the interface, we hereby use a network consisting of two fully-connected sub-networks that approximate the pressure and velocity, respectively. The two sub-networks share the same primary coordinate input arguments but with different augmented feature inputs. These two augmented inputs provide the interface information, so we assume that a level set function is given and its zero level set indicates the position of the interface. The pressure sub-network uses an indicator function as an augmented input to capture the function discontinuity, while the velocity sub-network uses a cusp-enforced level set function to capture the derivative discontinuities via the traction balance equation. We perform a series of numerical experiments to solve two- and three-dimensional Stokes interface problems and perform an accuracy comparison with the augmented immersed interface methods in literature. Our results indicate that even a shallow network with a moderate number of neurons and sufficient training data points can achieve prediction accuracy comparable to that of immersed interface methods.

In this work, we show that solvers of elliptic boundary value problems in $d$ dimensions can be approximated to accuracy $\epsilon$ from only $\mathcal{O}\left(\log(N)\log^{d}(N / \epsilon)\right)$ matrix-vector products with carefully chosen vectors (right-hand sides). The solver is only accessed as a black box, and the underlying operator may be unknown and of an arbitrarily high order. Our algorithm (1) has complexity $\mathcal{O}\left(N\log^2(N)\log^{2d}(N / \epsilon)\right)$ and represents the solution operator as a sparse Cholesky factorization with $\mathcal{O}\left(N\log(N)\log^{d}(N / \epsilon)\right)$ nonzero entries, (2) allows for embarrassingly parallel evaluation of the solution operator and the computation of its log-determinant, (3) allows for $\mathcal{O}\left(\log(N)\log^{d}(N / \epsilon)\right)$ complexity computation of individual entries of the matrix representation of the solver that, in turn, enables its recompression to an $\mathcal{O}\left(N\log^{d}(N / \epsilon)\right)$ complexity representation. As a byproduct, our compression scheme produces a homogenized solution operator with near-optimal approximation accuracy. By polynomial approximation, we can also approximate the continuous Green's function (in operator and Hilbert-Schmidt norm) to accuracy $\epsilon$ from $\mathcal{O}\left(\log^{1 + d}\left(\epsilon^{-1}\right)\right)$ solutions of the PDE. We include rigorous proofs of these results. To the best of our knowledge, our algorithm achieves the best known trade-off between accuracy $\epsilon$ and the number of required matrix-vector products.

We consider the linear lambda-calculus extended with the sup type constructor, which provides an additive conjunction along with a non-deterministic destructor. The sup type constructor has been introduced in the context of quantum computing. In this paper, we study this type constructor within a simple linear logic categorical model, employing the category of semimodules over a commutative semiring. We demonstrate that the non-deterministic destructor finds a suitable model in a "weighted" codiagonal map. This approach offers a valid and insightful alternative to interpreting non-determinism, especially in instances where the conventional Powerset Monad interpretation does not align with the category's structure, as is the case with the category of semimodules. The validity of this alternative relies on the presence of biproducts within the category.

Besov priors are nonparametric priors that can model spatially inhomogeneous functions. They are routinely used in inverse problems and imaging, where they exhibit attractive sparsity-promoting and edge-preserving features. A recent line of work has initiated the study of their asymptotic frequentist convergence properties. In the present paper, we consider the theoretical recovery performance of the posterior distributions associated to Besov-Laplace priors in the density estimation model, under the assumption that the observations are generated by a possibly spatially inhomogeneous true density belonging to a Besov space. We improve on existing results and show that carefully tuned Besov-Laplace priors attain optimal posterior contraction rates. Furthermore, we show that hierarchical procedures involving a hyper-prior on the regularity parameter lead to adaptation to any smoothness level.

We hypothesize that due to the greedy nature of learning in multi-modal deep neural networks, these models tend to rely on just one modality while under-fitting the other modalities. Such behavior is counter-intuitive and hurts the models' generalization, as we observe empirically. To estimate the model's dependence on each modality, we compute the gain on the accuracy when the model has access to it in addition to another modality. We refer to this gain as the conditional utilization rate. In the experiments, we consistently observe an imbalance in conditional utilization rates between modalities, across multiple tasks and architectures. Since conditional utilization rate cannot be computed efficiently during training, we introduce a proxy for it based on the pace at which the model learns from each modality, which we refer to as the conditional learning speed. We propose an algorithm to balance the conditional learning speeds between modalities during training and demonstrate that it indeed addresses the issue of greedy learning. The proposed algorithm improves the model's generalization on three datasets: Colored MNIST, Princeton ModelNet40, and NVIDIA Dynamic Hand Gesture.

北京阿比特科技有限公司