亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

Given two matrices $X,B\in \mathbb{R}^{n\times m}$ and a set $\mathcal{A}\subseteq \mathbb{R}^{n\times n}$, a Procrustes problem consists in finding a matrix $A \in \mathcal{A}$ such that the Frobenius norm of $AX-B$ is minimized. When $\mathcal{A}$ is the set of the matrices whose symmetric part is positive semidefinite, we obtain the so-called non-symmetric positive semidefinite Procrustes (NSPDSP) problem. The NSPDSP problem arises in the estimation of compliance or stiffness matrix in solid and elastic structures. If $X$ has rank $r$, Baghel et al. (Lin. Alg. Appl., 2022) proposed a three-step semi-analytical approach: (1) construct a reduced NSPDSP problem in dimension $r\times r$, (2) solve the reduced problem by means of a fast gradient method with a linear rate of convergence, and (3) post-process the solution of the reduced problem to construct a solution of the larger original NSPDSP problem. In this paper, we revisit this approach of Baghel et al. and identify an unnecessary assumption used by the authors leading to cases where their algorithm cannot attain a minimum and produces solutions with unbounded norm. In fact, revising the post-processing phase of their semi-analytical approach, we show that the infimum of the NSPDSP problem is always attained, and we show how to compute a minimum-norm solution. We also prove that the symmetric part of the computed solution has minimum rank bounded by $r$, and that the skew-symmetric part has rank bounded by $2r$. Several numerical examples show the efficiency of this algorithm, both in terms of computational speed and of finding optimal minimum-norm solutions.

相關內容

Predicting quantum operator matrices such as Hamiltonian, overlap, and density matrices in the density functional theory (DFT) framework is crucial for understanding material properties. Current methods often focus on individual operators and struggle with efficiency and scalability for large systems. Here we introduce a novel deep learning model, SLEM (strictly localized equivariant message-passing) for predicting multiple quantum operators, that achieves state-of-the-art accuracy while dramatically improving computational efficiency. SLEM's key innovation is its strict locality-based design, constructing local, equivariant representations for quantum tensors while preserving physical symmetries. This enables complex many-body dependence without expanding the effective receptive field, leading to superior data efficiency and transferability. Using an innovative SO(2) convolution technique, SLEM reduces the computational complexity of high-order tensor products and is therefore capable of handling systems requiring the $f$ and $g$ orbitals in their basis sets. We demonstrate SLEM's capabilities across diverse 2D and 3D materials, achieving high accuracy even with limited training data. SLEM's design facilitates efficient parallelization, potentially extending DFT simulations to systems with device-level sizes, opening new possibilities for large-scale quantum simulations and high-throughput materials discovery.

We propose a numerical method to solve parameter-dependent hyperbolic partial differential equations (PDEs) with a moment approach, based on a previous work from Marx et al. (2020). This approach relies on a very weak notion of solution of nonlinear equations, namely parametric entropy measure-valued (MV) solutions, satisfying linear equations in the space of Borel measures. The infinite-dimensional linear problem is approximated by a hierarchy of convex, finite-dimensional, semidefinite programming problems, called Lasserre's hierarchy. This gives us a sequence of approximations of the moments of the occupation measure associated with the parametric entropy MV solution, which is proved to converge. In the end, several post-treatments can be performed from this approximate moments sequence. In particular, the graph of the solution can be reconstructed from an optimization of the Christoffel-Darboux kernel associated with the approximate measure, that is a powerful approximation tool able to capture a large class of irregular functions. Also, for uncertainty quantification problems, several quantities of interest can be estimated, sometimes directly such as the expectation of smooth functionals of the solutions. The performance of our approach is evaluated through numerical experiments on the inviscid Burgers equation with parametrised initial conditions or parametrised flux function.

We consider the discretization of the $1d$-integral Dirichlet fractional Laplacian by $hp$-finite elements. We present quadrature schemes to set up the stiffness matrix and load vector that preserve the exponential convergence of $hp$-FEM on geometric meshes. The schemes are based on Gauss-Jacobi and Gauss-Legendre rules. We show that taking a number of quadrature points slightly exceeding the polynomial degree is enough to preserve root exponential convergence. The total number of algebraic operations to set up the system is $\mathcal{O}(N^{5/2})$, where $N$ is the problem size. Numerical example illustrate the analysis. We also extend our analysis to the fractional Laplacian in higher dimensions for $hp$-finite element spaces based on shape regular meshes.

Let ${\cal G}$ and ${\cal H}$ be minor-closed graph classes. The pair $({\cal H},{\cal G})$ is an Erd\H{o}s-P\'osa pair (EP-pair) if there is a function $f$ where, for every $k$ and every $G\in{\cal G},$ either $G$ has $k$ pairwise vertex-disjoint subgraphs not belonging to ${\cal H},$ or there is a set $S\subseteq V(G)$ where $|S|\leq f(k)$ and $G-S\in{\cal H}.$ The classic result of Erd\H{o}s and P\'osa says that if $\mathcal{F}$ is the class of forests, then $({\cal F},{\cal G})$ is an EP-pair for every ${\cal G}$. The class ${\cal G}$ is an EP-counterexample for ${\cal H}$ if ${\cal G}$ is minimal with the property that $({\cal H},{\cal G})$ is not an EP-pair. We prove that for every ${\cal H}$ the set $\mathfrak{C}_{\cal H}$ of all EP-counterexamples for ${\cal H}$ is finite. In particular, we provide a complete characterization of $\mathfrak{C}_{\cal H}$ for every ${\cal H}$ and give a constructive upper bound on its size. Each class ${\cal G}\in \mathfrak{C}_{\cal H}$ can be described as all minors of a sequence of grid-like graphs $\langle \mathscr{W}_{k} \rangle_{k\in \mathbb{N}}.$ Moreover, each $\mathscr{W}_{k}$ admits a half-integral packing: $k$ copies of some $H\not\in{\cal H}$ where no vertex is used more than twice. This gives a complete delineation of the half-integrality threshold of the Erd\H{o}s-P\'osa property for minors and yields a constructive proof of Thomas' conjecture on the half-integral Erd\H{o}s-P\'osa property for minors (recently confirmed, non-constructively, by Liu). Let $h$ be the maximum size of a graph in ${\cal H}.$ For every class ${\cal H},$ we construct an algorithm that, given a graph $G$ and a $k,$ either outputs a half-integral packing of $k$ copies of some $H \not\in {\cal H}$ or outputs a set of at most ${2^{k^{\cal O}_h(1)}}$ vertices whose deletion creates a graph in ${\cal H}$ in time $2^{2^{k^{{\cal O}_h(1)}}}\cdot |G|^4\log |G|.$

Houdr\'e and Tetali defined a class of isoperimetric constants $\varphi_p$ of graphs for $0 \leq p \leq 1$, and conjectured a Cheeger-type inequality for $\varphi_\frac12$ of the form $$\lambda_2 \lesssim \varphi_\frac12 \lesssim \sqrt{\lambda_2}$$ where $\lambda_2$ is the second smallest eigenvalue of the normalized Laplacian matrix. If true, the conjecture would be a strengthening of the hard direction of the classical Cheeger's inequality. Morris and Peres proved Houdr\'e and Tetali's conjecture up to an additional log factor, using techniques from evolving sets. We present the following related results on this conjecture. - We provide a family of counterexamples to the conjecture of Houdr\'e and Tetali, showing that the logarithmic factor is needed. - We match Morris and Peres's bound using standard spectral arguments. - We prove that Houdr\'e and Tetali's conjecture is true for any constant $p$ strictly bigger than $\frac12$, which is also a strengthening of the hard direction of Cheeger's inequality. Furthermore, our results can be extended to directed graphs using Chung's definition of eigenvalues for directed graphs.

We investigate the strong convergence properties of a proximal-gradient inertial algorithm with two Tikhonov regularization terms in connection to the minimization problem of the sum of a convex lower semi-continuous function $f$ and a smooth convex function $g$. For the appropriate setting of the parameters we provide strong convergence of the generated sequence $(x_k)$ to the minimum norm minimizer of our objective function $f+g$. Further, we obtain fast convergence to zero of the objective function values in a generated sequence but also for the discrete velocity and the sub-gradient of the objective function. We also show that for another settings of the parameters the optimal rate of order $\mathcal{O}(k^{-2})$ for the potential energy $(f+g)(x_k)-\min(f+g)$ can be obtained.

Consider an operator that takes the Fourier transform of a discrete measure supported in $\mathcal{X}\subset[-\frac 12,\frac 12)^d$ and restricts it to a compact $\Omega\subset\mathbb{R}^d$. We provide lower bounds for its smallest singular value when $\Omega$ is either a ball or cube of radius $m$, and under different types of geometric assumptions on $\mathcal{X}$. We first show that if distances between points in $\mathcal{X}$ are lower bounded by a $\delta$ that is allowed to be arbitrarily small, then the smallest singular value is at least $Cm^{d/2} (m\delta)^{\lambda-1}$, where $\lambda$ is the maximum number of elements in $\mathcal{X}$ contained within any ball or cube of an explicitly given radius. This estimate communicates a localization effect of the Fourier transform. While it is sharp, the smallest singular value behaves better than expected for many $\mathcal{X}$, including when we dilate a generic set by parameter $\delta$. We next show that if there is a $\eta$ such that, for each $x\in\mathcal{X}$, the set $\mathcal{X}\setminus\{x\}$ locally consists of at most $r$ hyperplanes whose distances to $x$ are at least $\eta$, then the smallest singular value is at least $C m^{d/2} (m\eta)^r$. For dilations of a generic set by $\delta$, the lower bound becomes $C m^{d/2} (m\delta)^{\lceil (\lambda-1)/d\rceil }$. The appearance of a $1/d$ factor in the exponent indicates that compared to worst case scenarios, the condition number of nonharmonic Fourier transforms is better than expected for typical sets and improve with higher dimensionality.

\v{C}ech Persistence diagrams (PDs) are topological descriptors routinely used to capture the geometry of complex datasets. They are commonly compared using the Wasserstein distances $OT_{p}$; however, the extent to which PDs are stable with respect to these metrics remains poorly understood. We partially close this gap by focusing on the case where datasets are sampled on an $m$-dimensional submanifold of $\mathbb{R}^{d}$. Under this manifold hypothesis, we show that convergence with respect to the $OT_{p}$ metric happens exactly when $p\gt m$. We also provide improvements upon the bottleneck stability theorem in this case and prove new laws of large numbers for the total $\alpha$-persistence of PDs. Finally, we show how these theoretical findings shed new light on the behavior of the feature maps on the space of PDs that are used in ML-oriented applications of Topological Data Analysis.

We consider the following decision problem: given two simply typed $\lambda$-terms, are they $\beta$-convertible? Equivalently, do they have the same normal form? It is famously non-elementary, but the precise complexity - namely TOWER-complete - is lesser known. One goal of this short paper is to popularize this fact. Our original contribution is to show that the problem stays TOWER-complete when the two input terms belong to Blum and Ong's safe $\lambda$-calculus, a fragment of the simply typed $\lambda$-calculus arising from the study of higher-order recursion schemes. Previously, the best known lower bound for this safe $\beta$-convertibility problem was PSPACE-hardness. Our proof proceeds by reduction from the star-free expression equivalence problem, taking inspiration from the author's work with Pradic on "implicit automata in typed $\lambda$-calculi". These results also hold for $\beta\eta$-convertibility.

The convex dimension of a $k$-uniform hypergraph is the smallest dimension $d$ for which there is an injective mapping of its vertices into $\mathbb{R}^d$ such that the set of $k$-barycenters of all hyperedges is in convex position. We completely determine the convex dimension of complete $k$-uniform hypergraphs, which settles an open question by Halman, Onn and Rothblum, who solved the problem for complete graphs. We also provide lower and upper bounds for the extremal problem of estimating the maximal number of hyperedges of $k$-uniform hypergraphs on $n$ vertices with convex dimension $d$. To prove these results, we restate them in terms of affine projections that preserve the vertices of the hypersimplex. More generally, we provide a full characterization of the projections that preserve its $i$-dimensional skeleton. In particular, we obtain a hypersimplicial generalization of the linear van Kampen-Flores theorem: for each $n$, $k$ and $i$ we determine onto which dimensions can the $(n,k)$-hypersimplex be linearly projected while preserving its $i$-skeleton. Our results have direct interpretations in terms of $k$-sets and $(i,j)$-partitions, and are closely related to the problem of finding large convexly independent subsets in Minkowski sums of $k$ point sets.

北京阿比特科技有限公司