亚洲男人的天堂2018av,欧美草比,久久久久久免费视频精选,国色天香在线看免费,久久久久亚洲av成人片仓井空

The evolution of image halftoning, from its analog roots to contemporary digital methodologies, encapsulates a fascinating journey marked by technological advancements and creative innovations. Yet the theoretical understanding of halftoning is much more recent. In this article, we explore various approaches towards shedding light on the design of halftoning approaches and why they work. We discuss both halftoning in a continuous domain and on a pixel grid. We start by reviewing the mathematical foundation of the so-called electrostatic halftoning method, which departed from the heuristic of considering the back dots of the halftoned image as charged particles attracted by the grey values of the image in combination with mutual repulsion. Such an attraction-repulsion model can be mathematically represented via an energy functional in a reproducing kernel Hilbert space allowing for a rigorous analysis of the resulting optimization problem as well as a convergence analysis in a suitable topology. A second class of methods that we discuss in detail is the class of error diffusion schemes, arguably among the most popular halftoning techniques due to their ability to work directly on a pixel grid and their ease of application. The main idea of these schemes is to choose the locations of the black pixels via a recurrence relation designed to agree with the image in terms of the local averages. We discuss some recent mathematical understanding of these methods that is based on a connection to Sigma-Delta quantizers, a popular class of algorithms for analog-to-digital conversion.

相關內容

 數學是關于(yu)數量(liang)、結(jie)構、變化等主題的探索。

Generative retrieval (GR) has emerged as a transformative paradigm in search and recommender systems, leveraging numeric-based identifier representations to enhance efficiency and generalization. Notably, methods like TIGER employing Residual Quantization-based Semantic Identifiers (RQ-SID), have shown significant promise in e-commerce scenarios by effectively managing item IDs. However, a critical issue termed the "\textbf{Hourglass}" phenomenon, occurs in RQ-SID, where intermediate codebook tokens become overly concentrated, hindering the full utilization of generative retrieval methods. This paper analyses and addresses this problem by identifying data sparsity and long-tailed distribution as the primary causes. Through comprehensive experiments and detailed ablation studies, we analyze the impact of these factors on codebook utilization and data distribution. Our findings reveal that the "Hourglass" phenomenon substantially impacts the performance of RQ-SID in generative retrieval. We propose effective solutions to mitigate this issue, thereby significantly enhancing the effectiveness of generative retrieval in real-world E-commerce applications.

The scientific method is the cornerstone of human progress across all branches of the natural and applied sciences, from understanding the human body to explaining how the universe works. The scientific method is based on identifying systematic rules or principles that describe the phenomenon of interest in a reproducible way that can be validated through experimental evidence. In the era of artificial intelligence (AI), there are discussions on how AI systems may discover new knowledge. We argue that human complex reasoning for scientific discovery remains of vital importance, at least before the advent of artificial general intelligence. Yet, AI can be leveraged for scientific discovery via explainable AI. More specifically, knowing what data AI systems deemed important to make decisions can be a point of contact with domain experts and scientists, that can lead to divergent or convergent views on a given scientific problem. Divergent views may spark further scientific investigations leading to new scientific knowledge.

Annotations play a vital role in highlighting critical aspects of visualizations, aiding in data externalization and exploration, collaborative sensemaking, and visual storytelling. However, despite their widespread use, we identified a lack of a design space for common practices for annotations. In this paper, we evaluated over 1,800 static annotated charts to understand how people annotate visualizations in practice. Through qualitative coding of these diverse real-world annotated charts, we explored three primary aspects of annotation usage patterns: analytic purposes for chart annotations (e.g., present, identify, summarize, or compare data features), mechanisms for chart annotations (e.g., types and combinations of annotations used, frequency of different annotation types across chart types, etc.), and the data source used to generate the annotations. We then synthesized our findings into a design space of annotations, highlighting key design choices for chart annotations. We presented three case studies illustrating our design space as a practical framework for chart annotations to enhance the communication of visualization insights. All supplemental materials are available at {//shorturl.at/bAGM1}.

We investigate the classification performance of graph neural networks with graph-polynomial features, poly-GNNs, on the problem of semi-supervised node classification. We analyze poly-GNNs under a general contextual stochastic block model (CSBM) by providing a sharp characterization of the rate of separation between classes in their output node representations. A question of interest is whether this rate depends on the depth of the network $k$, i.e., whether deeper networks can achieve a faster separation? We provide a negative answer to this question: for a sufficiently large graph, a depth $k > 1$ poly-GNN exhibits the same rate of separation as a depth $k=1$ counterpart. Our analysis highlights and quantifies the impact of ``graph noise'' in deep GNNs and shows how noise in the graph structure can dominate other sources of signal in the graph, negating any benefit further aggregation provides. Our analysis also reveals subtle differences between even and odd-layered GNNs in how the feature noise propagates.

Writing, as an omnipresent form of human communication, permeates nearly every aspect of contemporary life. Consequently, inaccuracies or errors in written communication can lead to profound consequences, ranging from financial losses to potentially life-threatening situations. Spelling mistakes, among the most prevalent writing errors, are frequently encountered due to various factors. This research aims to identify and rectify diverse spelling errors in text using neural networks, specifically leveraging the Bidirectional Encoder Representations from Transformers (BERT) masked language model. To achieve this goal, we compiled a comprehensive dataset encompassing both non-real-word and real-word errors after categorizing different types of spelling mistakes. Subsequently, multiple pre-trained BERT models were employed. To ensure optimal performance in correcting misspelling errors, we propose a combined approach utilizing the BERT masked language model and Levenshtein distance. The results from our evaluation data demonstrate that the system presented herein exhibits remarkable capabilities in identifying and rectifying spelling mistakes, often surpassing existing systems tailored for the Persian language.

While the automated detection of cryptographic API misuses has progressed significantly, its precision diminishes for intricate targets due to the reliance on manually defined patterns. Large Language Models (LLMs), renowned for their contextual understanding, offer a promising avenue to address existing shortcomings. However, applying LLMs in this security-critical domain presents challenges, particularly due to the unreliability stemming from LLMs' stochastic nature and the well-known issue of hallucination. To explore the prevalence of LLMs' unreliable analysis and potential solutions, this paper introduces a systematic evaluation framework to assess LLMs in detecting cryptographic misuses, utilizing a comprehensive dataset encompassing both manually-crafted samples and real-world projects. Our in-depth analysis of 11,940 LLM-generated reports highlights that the inherent instabilities in LLMs can lead to over half of the reports being false positives. Nevertheless, we demonstrate how a constrained problem scope, coupled with LLMs' self-correction capability, significantly enhances the reliability of the detection. The optimized approach achieves a remarkable detection rate of nearly 90%, surpassing traditional methods and uncovering previously unknown misuses in established benchmarks. Moreover, we identify the failure patterns that persistently hinder LLMs' reliability, including both cryptographic knowledge deficiency and code semantics misinterpretation. Guided by these insights, we develop an LLM-based workflow to examine open-source repositories, leading to the discovery of 63 real-world cryptographic misuses. Of these, 46 have been acknowledged by the development community, with 23 currently being addressed and 6 resolved. Reflecting on developers' feedback, we offer recommendations for future research and the development of LLM-based security tools.

This survey explores the burgeoning field of role-playing with language models, focusing on their development from early persona-based models to advanced character-driven simulations facilitated by Large Language Models (LLMs). Initially confined to simple persona consistency due to limited model capabilities, role-playing tasks have now expanded to embrace complex character portrayals involving character consistency, behavioral alignment, and overall attractiveness. We provide a comprehensive taxonomy of the critical components in designing these systems, including data, models and alignment, agent architecture and evaluation. This survey not only outlines the current methodologies and challenges, such as managing dynamic personal profiles and achieving high-level persona consistency but also suggests avenues for future research in improving the depth and realism of role-playing applications. The goal is to guide future research by offering a structured overview of current methodologies and identifying potential areas for improvement. Related resources and papers are available at //github.com/nuochenpku/Awesome-Role-Play-Papers.

Synthetic datasets constructed from formal languages allow fine-grained examination of the learning and generalization capabilities of machine learning systems for sequence classification. This article presents a new benchmark for machine learning systems on sequence classification called MLRegTest, which contains training, development, and test sets from 1,800 regular languages. Different kinds of formal languages represent different kinds of long-distance dependencies, and correctly identifying long-distance dependencies in sequences is a known challenge for ML systems to generalize successfully. MLRegTest organizes its languages according to their logical complexity (monadic second order, first order, propositional, or monomial expressions) and the kind of logical literals (string, tier-string, subsequence, or combinations thereof). The logical complexity and choice of literal provides a systematic way to understand different kinds of long-distance dependencies in regular languages, and therefore to understand the capacities of different ML systems to learn such long-distance dependencies. Finally, the performance of different neural networks (simple RNN, LSTM, GRU, transformer) on MLRegTest is examined. The main conclusion is that performance depends significantly on the kind of test set, the class of language, and the neural network architecture.

We introduce a multi-task setup of identifying and classifying entities, relations, and coreference clusters in scientific articles. We create SciERC, a dataset that includes annotations for all three tasks and develop a unified framework called Scientific Information Extractor (SciIE) for with shared span representations. The multi-task setup reduces cascading errors between tasks and leverages cross-sentence relations through coreference links. Experiments show that our multi-task model outperforms previous models in scientific information extraction without using any domain-specific features. We further show that the framework supports construction of a scientific knowledge graph, which we use to analyze information in scientific literature.

While it is nearly effortless for humans to quickly assess the perceptual similarity between two images, the underlying processes are thought to be quite complex. Despite this, the most widely used perceptual metrics today, such as PSNR and SSIM, are simple, shallow functions, and fail to account for many nuances of human perception. Recently, the deep learning community has found that features of the VGG network trained on the ImageNet classification task has been remarkably useful as a training loss for image synthesis. But how perceptual are these so-called "perceptual losses"? What elements are critical for their success? To answer these questions, we introduce a new Full Reference Image Quality Assessment (FR-IQA) dataset of perceptual human judgments, orders of magnitude larger than previous datasets. We systematically evaluate deep features across different architectures and tasks and compare them with classic metrics. We find that deep features outperform all previous metrics by huge margins. More surprisingly, this result is not restricted to ImageNet-trained VGG features, but holds across different deep architectures and levels of supervision (supervised, self-supervised, or even unsupervised). Our results suggest that perceptual similarity is an emergent property shared across deep visual representations.

北京阿比特科技有限公司