We investigate various forms of (model-theoretic) stability for hypergraphs and their corresponding strengthenings of the hypergraph regularity lemma with respect to partitions of vertices. On the one hand, we provide a complete classification of the various possibilities in the ternary case. On the other hand, we provide an example of a family of slice-wise stable 3-hypergraphs so that for no partition of the vertices, any triple of parts has density close to 0 or 1. In particular, this addresses some questions and conjectures of Terry and Wolf. We work in the general measure theoretic context of graded probability spaces, so all our results apply both to measures in ultraproducts of finite graphs, leading to the aforementioned combinatorial applications, and to commuting definable Keisler measures, leading to applications in model theory.
Six time series related to atmospheric phenomena are used as inputs for experiments offorecasting with singular spectrum analysis (SSA). Existing methods for SSA parametersselection are compared throughout their forecasting accuracy relatively to an optimal aposteriori selection and to a naive forecasting methods. The comparison shows that awidespread practice of selecting longer windows leads often to poorer predictions. It alsoconfirms that the choices of the window length and of the grouping are essential. Withthe mean error of rainfall forecasting below 1.5%, SSA appears as a viable alternative forhorizons beyond two weeks.
Deep generative models aim to learn the underlying distribution of data and generate new ones. Despite the diversity of generative models and their high-quality generation performance in practice, most of them lack rigorous theoretical convergence proofs. In this work, we aim to establish some convergence results for OT-Flow, one of the deep generative models. First, by reformulating the framework of OT-Flow model, we establish the $\Gamma$-convergence of the formulation of OT-flow to the corresponding optimal transport (OT) problem as the regularization term parameter $\alpha$ goes to infinity. Second, since the loss function will be approximated by Monte Carlo method in training, we established the convergence between the discrete loss function and the continuous one when the sample number $N$ goes to infinity as well. Meanwhile, the approximation capability of the neural network provides an upper bound for the discrete loss function of the minimizers. The proofs in both aspects provide convincing assurances for OT-Flow.
Random fields are ubiquitous mathematical structures in physics, with applications ranging from thermodynamics and statistical physics to quantum field theory and cosmology. Recent works on information geometry of Gaussian random fields proposed mathematical expressions for the components of the metric tensor of the underlying parametric space, allowing the computation of the curvature in each point of the manifold. In this study, our hypothesis is that time irreversibility in Gaussian random fields dynamics is a direct consequence of geometric properties (curvature) of their parametric space. In order to validate this hypothesis, we compute the components of the metric tensor and derive the twenty seven Christoffel symbols of the metric to define the Euler-Lagrange equations, a system of partial differential equations that are used to build geodesic curves in Riemannian manifolds. After that, by the application of the fourth-order Runge-Kutta method and Markov Chain Monte Carlo simulation, we numerically build geodesic curves starting from an arbitrary initial point in the manifold. The obtained results show that, when the system undergoes phase transitions, the geodesic curve obtained by time reversing the computational simulation diverges from the original curve, showing a strange effect that we called the geodesic dispersion phenomenon, which suggests that time irreversibility in random fields is related to the intrinsic geometry of their parametric space.
Given a hypergraph $\mathcal{H}$, the dual hypergraph of $\mathcal{H}$ is the hypergraph of all minimal transversals of $\mathcal{H}$. The dual hypergraph is always Sperner, that is, no hyperedge contains another. A special case of Sperner hypergraphs are the conformal Sperner hypergraphs, which correspond to the families of maximal cliques of graphs. All these notions play an important role in many fields of mathematics and computer science, including combinatorics, algebra, database theory, etc. In this paper we study conformality of dual hypergraphs and prove several results related to the problem of recognizing this property. In particular, we show that the problem is in co-NP and can be solved in polynomial time for hypergraphs of bounded dimension. In the special case of dimension $3$, we reduce the problem to $2$-Satisfiability. Our approach has an implication in algorithmic graph theory: we obtain a polynomial-time algorithm for recognizing graphs in which all minimal transversals of maximal cliques have size at most $k$, for any fixed $k$.
Entropy conditions play a crucial role in the extraction of a physically relevant solution for a system of conservation laws, thus motivating the construction of entropy stable schemes that satisfy a discrete analogue of such conditions. TeCNO schemes (Fjordholm et al. 2012) form a class of arbitrary high-order entropy stable finite difference solvers, which require specialized reconstruction algorithms satisfying the sign property at each cell interface. Recently, third-order WENO schemes called SP-WENO (Fjordholm and Ray, 2016) and SP-WENOc (Ray, 2018) have been designed to satisfy the sign property. However, these WENO algorithms can perform poorly near shocks, with the numerical solutions exhibiting large spurious oscillations. In the present work, we propose a variant of the SP-WENO, termed as Deep Sign-Preserving WENO (DSP-WENO), where a neural network is trained to learn the WENO weighting strategy. The sign property and third-order accuracy are strongly imposed in the algorithm, which constrains the WENO weight selection region to a convex polygon. Thereafter, a neural network is trained to select the WENO weights from this convex region with the goal of improving the shock-capturing capabilities without sacrificing the rate of convergence in smooth regions. The proposed synergistic approach retains the mathematical framework of the TeCNO scheme while integrating deep learning to remedy the computational issues of the WENO-based reconstruction. We present several numerical experiments to demonstrate the significant improvement with DSP-WENO over the existing variants of WENO satisfying the sign property.
Parameters of differential equations are essential to characterize intrinsic behaviors of dynamic systems. Numerous methods for estimating parameters in dynamic systems are computationally and/or statistically inadequate, especially for complex systems with general-order differential operators, such as motion dynamics. This article presents Green's matching, a computationally tractable and statistically efficient two-step method, which only needs to approximate trajectories in dynamic systems but not their derivatives due to the inverse of differential operators by Green's function. This yields a statistically optimal guarantee for parameter estimation in general-order equations, a feature not shared by existing methods, and provides an efficient framework for broad statistical inferences in complex dynamic systems.
We formulate a uniform tail bound for empirical processes indexed by a class of functions, in terms of the individual deviations of the functions rather than the worst-case deviation in the considered class. The tail bound is established by introducing an initial "deflation" step to the standard generic chaining argument. The resulting tail bound is the sum of the complexity of the "deflated function class" in terms of a generalization of Talagrand's $\gamma$ functional, and the deviation of the function instance, both of which are formulated based on the natural seminorm induced by the corresponding Cram\'{e}r functions. We also provide certain approximations for the mentioned seminorm when the function class lies in a given (exponential type) Orlicz space, that can be used to make the complexity term and the deviation term more explicit.
The latency location routing problem integrates the facility location problem and the multi-depot cumulative capacitated vehicle routing problem. This problem involves making simultaneous decisions about depot locations and vehicle routes to serve customers while aiming to minimize the sum of waiting (arriving) times for all customers. To address this computationally challenging problem, we propose a reinforcement learning guided hybrid evolutionary algorithm following the framework of the memetic algorithm. The proposed algorithm relies on a diversity-enhanced multi-parent edge assembly crossover to build promising offspring and a reinforcement learning guided variable neighborhood descent to determine the exploration order of multiple neighborhoods. Additionally, strategic oscillation is used to achieve a balanced exploration of both feasible and infeasible solutions. The competitiveness of the algorithm against state-of-the-art methods is demonstrated by experimental results on the three sets of 76 popular instances, including 51 improved best solutions (new upper bounds) for the 59 instances with unknown optima and equal best results for the remaining instances. We also conduct additional experiments to shed light on the key components of the algorithm.
The numerical treatment of fluid-particle systems is a very challenging problem because of the complex coupling phenomena occurring between the two phases. Although accurate mathematical modelling is available to address this kind of application, the computational cost of the numerical simulations is very expensive. The use of the most modern high-performance computing infrastructures could help to mitigate such an issue but not completely fix it. In this work, we develop a non-intrusive data-driven reduced order model (ROM) for Computational Fluid Dynamics (CFD) - Discrete Element Method (DEM) simulations. The ROM is built using the proper orthogonal decomposition (POD) for the computation of the reduced basis space and the Long Short-Term Memory (LSTM) network for the computation of the reduced coefficients. We are interested in dealing both with system identification and prediction. The most relevant novelties rely on (i) a filtering procedure of the full-order snapshots to reduce the dimensionality of the reduced problem and (ii) a preliminary treatment of the particle phase. The accuracy of our ROM approach is assessed against the classic Goldschmidt fluidized bed benchmark problem. Finally, we also provide some insights about the efficiency of our ROM approach.
Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.