Recently, vehicle similarity learning, also called re-identification (ReID), has attracted significant attention in computer vision. Several algorithms have been developed and obtained considerable success. However, most existing methods have unpleasant performance in the hazy scenario due to poor visibility. Though some strategies are possible to resolve this problem, they still have room to be improved due to the limited performance in real-world scenarios and the lack of real-world clear ground truth. Thus, to resolve this problem, inspired by CycleGAN, we construct a training paradigm called \textbf{RVSL} which integrates ReID and domain transformation techniques. The network is trained on semi-supervised fashion and does not require to employ the ID labels and the corresponding clear ground truths to learn hazy vehicle ReID mission in the real-world haze scenes. To further constrain the unsupervised learning process effectively, several losses are developed. Experimental results on synthetic and real-world datasets indicate that the proposed method can achieve state-of-the-art performance on hazy vehicle ReID problems. It is worth mentioning that although the proposed method is trained without real-world label information, it can achieve competitive performance compared to existing supervised methods trained on complete label information.
In machine learning, the selection of a promising model from a potentially large number of competing models and the assessment of its generalization performance are critical tasks that need careful consideration. Typically, model selection and evaluation are strictly separated endeavors, splitting the sample at hand into a training, validation, and evaluation set, and only compute a single confidence interval for the prediction performance of the final selected model. We however propose an algorithm how to compute valid lower confidence bounds for multiple models that have been selected based on their prediction performances in the evaluation set by interpreting the selection problem as a simultaneous inference problem. We use bootstrap tilting and a maxT-type multiplicity correction. The approach is universally applicable for any combination of prediction models, any model selection strategy, and any prediction performance measure that accepts weights. We conducted various simulation experiments which show that our proposed approach yields lower confidence bounds that are at least comparably good as bounds from standard approaches, and that reliably reach the nominal coverage probability. In addition, especially when sample size is small, our proposed approach yields better performing prediction models than the default selection of only one model for evaluation does.
The facility location problems (FLPs) are a typical class of NP-hard combinatorial optimization problems, which are widely seen in the supply chain and logistics. Many mathematical and heuristic algorithms have been developed for optimizing the FLP. In addition to the transportation cost, there are usually multiple conflicting objectives in realistic applications. It is therefore desirable to design algorithms that find a set of Pareto solutions efficiently without enormous search cost. In this paper, we consider the multi-objective facility location problem (MO-FLP) that simultaneously minimizes the overall cost and maximizes the system reliability. We develop a learning-based approach to predicting the distribution probability of the entire Pareto set for a given problem. To this end, the MO-FLP is modeled as a bipartite graph optimization problem and two graph neural networks are constructed to learn the implicit graph representation on nodes and edges. The network outputs are then converted into the probability distribution of the Pareto set, from which a set of non-dominated solutions can be sampled non-autoregressively. Experimental results on MO-FLP instances of different scales show that the proposed approach achieves a comparable performance to a widely used multi-objective evolutionary algorithm in terms of the solution quality while significantly reducing the computational cost for search.
Most previous neural text-to-speech (TTS) methods are mainly based on supervised learning methods, which means they depend on a large training dataset and hard to achieve comparable performance under low-resource conditions. To address this issue, we propose a semi-supervised learning method for neural TTS in which labeled target data is limited, which can also resolve the problem of exposure bias in the previous auto-regressive models. Specifically, we pre-train the reference model based on Fastspeech2 with much source data, fine-tuned on a limited target dataset. Meanwhile, pseudo labels generated by the original reference model are used to guide the fine-tuned model's training further, achieve a regularization effect, and reduce the overfitting of the fine-tuned model during training on the limited target data. Experimental results show that our proposed semi-supervised learning scheme with limited target data significantly improves the voice quality for test data to achieve naturalness and robustness in speech synthesis.
Deformable shapes provide important and complex geometric features of objects presented in images. However, such information is oftentimes missing or underutilized as implicit knowledge in many image analysis tasks. This paper presents Geo-SIC, the first deep learning model to learn deformable shapes in a deformation space for an improved performance of image classification. We introduce a newly designed framework that (i) simultaneously derives features from both image and latent shape spaces with large intra-class variations; and (ii) gains increased model interpretability by allowing direct access to the underlying geometric features of image data. In particular, we develop a boosted classification network, equipped with an unsupervised learning of geometric shape representations characterized by diffeomorphic transformations within each class. In contrast to previous approaches using pre-extracted shapes, our model provides a more fundamental approach by naturally learning the most relevant shape features jointly with an image classifier. We demonstrate the effectiveness of our method on both simulated 2D images and real 3D brain magnetic resonance (MR) images. Experimental results show that our model substantially improves the image classification accuracy with an additional benefit of increased model interpretability. Our code is publicly available at //github.com/jw4hv/Geo-SIC
Compared with multi-class classification, multi-label classification that contains more than one class is more suitable in real life scenarios. Obtaining fully labeled high-quality datasets for multi-label classification problems, however, is extremely expensive, and sometimes even infeasible, with respect to annotation efforts, especially when the label spaces are too large. This motivates the research on partial-label classification, where only a limited number of labels are annotated and the others are missing. To address this problem, we first propose a pseudo-label based approach to reduce the cost of annotation without bringing additional complexity to the existing classification networks. Then we quantitatively study the impact of missing labels on the performance of classifier. Furthermore, by designing a novel loss function, we are able to relax the requirement that each instance must contain at least one positive label, which is commonly used in most existing approaches. Through comprehensive experiments on three large-scale multi-label image datasets, i.e. MS-COCO, NUS-WIDE, and Pascal VOC12, we show that our method can handle the imbalance between positive labels and negative labels, while still outperforming existing missing-label learning approaches in most cases, and in some cases even approaches with fully labeled datasets.
Multi-Task Learning (MTL) is a learning paradigm in machine learning and its aim is to leverage useful information contained in multiple related tasks to help improve the generalization performance of all the tasks. In this paper, we give a survey for MTL from the perspective of algorithmic modeling, applications and theoretical analyses. For algorithmic modeling, we give a definition of MTL and then classify different MTL algorithms into five categories, including feature learning approach, low-rank approach, task clustering approach, task relation learning approach and decomposition approach as well as discussing the characteristics of each approach. In order to improve the performance of learning tasks further, MTL can be combined with other learning paradigms including semi-supervised learning, active learning, unsupervised learning, reinforcement learning, multi-view learning and graphical models. When the number of tasks is large or the data dimensionality is high, we review online, parallel and distributed MTL models as well as dimensionality reduction and feature hashing to reveal their computational and storage advantages. Many real-world applications use MTL to boost their performance and we review representative works in this paper. Finally, we present theoretical analyses and discuss several future directions for MTL.
Graph Neural Networks (GNNs) are widely used for analyzing graph-structured data. Most GNN methods are highly sensitive to the quality of graph structures and usually require a perfect graph structure for learning informative embeddings. However, the pervasiveness of noise in graphs necessitates learning robust representations for real-world problems. To improve the robustness of GNN models, many studies have been proposed around the central concept of Graph Structure Learning (GSL), which aims to jointly learn an optimized graph structure and corresponding representations. Towards this end, in the presented survey, we broadly review recent progress of GSL methods for learning robust representations. Specifically, we first formulate a general paradigm of GSL, and then review state-of-the-art methods classified by how they model graph structures, followed by applications that incorporate the idea of GSL in other graph tasks. Finally, we point out some issues in current studies and discuss future directions.
Many tasks in natural language processing can be viewed as multi-label classification problems. However, most of the existing models are trained with the standard cross-entropy loss function and use a fixed prediction policy (e.g., a threshold of 0.5) for all the labels, which completely ignores the complexity and dependencies among different labels. In this paper, we propose a meta-learning method to capture these complex label dependencies. More specifically, our method utilizes a meta-learner to jointly learn the training policies and prediction policies for different labels. The training policies are then used to train the classifier with the cross-entropy loss function, and the prediction policies are further implemented for prediction. Experimental results on fine-grained entity typing and text classification demonstrate that our proposed method can obtain more accurate multi-label classification results.
The quest of `can machines think' and `can machines do what human do' are quests that drive the development of artificial intelligence. Although recent artificial intelligence succeeds in many data intensive applications, it still lacks the ability of learning from limited exemplars and fast generalizing to new tasks. To tackle this problem, one has to turn to machine learning, which supports the scientific study of artificial intelligence. Particularly, a machine learning problem called Few-Shot Learning (FSL) targets at this case. It can rapidly generalize to new tasks of limited supervised experience by turning to prior knowledge, which mimics human's ability to acquire knowledge from few examples through generalization and analogy. It has been seen as a test-bed for real artificial intelligence, a way to reduce laborious data gathering and computationally costly training, and antidote for rare cases learning. With extensive works on FSL emerging, we give a comprehensive survey for it. We first give the formal definition for FSL. Then we point out the core issues of FSL, which turns the problem from "how to solve FSL" to "how to deal with the core issues". Accordingly, existing works from the birth of FSL to the most recent published ones are categorized in a unified taxonomy, with thorough discussion of the pros and cons for different categories. Finally, we envision possible future directions for FSL in terms of problem setup, techniques, applications and theory, hoping to provide insights to both beginners and experienced researchers.