As Virtual Reality becomes commonplace in the world, it is important for developers to focus on user interaction with the virtual world. Currently, there are limitations to some selection and navigation techniques that have not yet been completely overcome. Focusing specifically on enhancing ray-casting, we present the advanced technique of folding rays which allows for the selection of occluded targets without any unnecessary physical navigation around a virtual environment. By improving upon current approaches, our technique allows for the selection of these targets without any manipulation of the virtual environment itself using rays that can bend at user-determined points. With their potential to be used in conjunction with teleportation as a virtual navigation technique, folding rays can be used in a variety of scenarios to enhance a user's interactive experience in virtual environments.
Graph Neural Networks (GNNs) have emerged as the de facto standard for representation learning on graphs, owing to their ability to effectively integrate graph topology and node attributes. However, the inherent suboptimal nature of node connections, resulting from the complex and contingent formation process of graphs, presents significant challenges in modeling them effectively. To tackle this issue, Graph Structure Learning (GSL), a family of data-centric learning approaches, has garnered substantial attention in recent years. The core concept behind GSL is to jointly optimize the graph structure and the corresponding GNN models. Despite the proposal of numerous GSL methods, the progress in this field remains unclear due to inconsistent experimental protocols, including variations in datasets, data processing techniques, and splitting strategies. In this paper, we introduce OpenGSL, the first comprehensive benchmark for GSL, aimed at addressing this gap. OpenGSL enables a fair comparison among state-of-the-art GSL methods by evaluating them across various popular datasets using uniform data processing and splitting strategies. Through extensive experiments, we observe that existing GSL methods do not consistently outperform vanilla GNN counterparts. We also find that there is no significant correlation between the homophily of the learned structure and task performance, challenging the common belief. Moreover, we observe that the learned graph structure demonstrates a strong generalization ability across different GNN models, despite the high computational and space consumption. We hope that our open-sourced library will facilitate rapid and equitable evaluation and inspire further innovative research in this field. The code of the benchmark can be found in //github.com/OpenGSL/OpenGSL.
The International Phonetic Alphabet (IPA) is indispensable in language learning and understanding, aiding users in accurate pronunciation and comprehension. Additionally, it plays a pivotal role in speech therapy, linguistic research, accurate transliteration, and the development of text-to-speech systems, making it an essential tool across diverse fields. Bangla being 7th as one of the widely used languages, gives rise to the need for IPA in its domain. Its IPA mapping is too diverse to be captured manually giving the need for Artificial Intelligence and Machine Learning in this field. In this study, we have utilized a transformer-based sequence-to-sequence model at the letter and symbol level to get the IPA of each Bangla word as the variation of IPA in association of different words is almost null. Our transformer model only consisted of 8.5 million parameters with only a single decoder and encoder layer. Additionally, to handle the punctuation marks and the occurrence of foreign languages in the text, we have utilized manual mapping as the model won't be able to learn to separate them from Bangla words while decreasing our required computational resources. Finally, maintaining the relative position of the sentence component IPAs and generation of the combined IPA has led us to achieve the top position with a word error rate of 0.10582 in the public ranking of DataVerse Challenge - ITVerse 2023 (//www.kaggle.com/competitions/dataverse_2023/).
Fully Homomorphic Encryption (FHE) has the potential to substantially improve privacy and security by enabling computation on encrypted data. This is especially true with deep learning, as today many popular user services are powered by neural networks. One of the major challenges facing wide-scale deployment of FHE-secured neural inference is effectively mapping them to the FHE domain. FHE poses many programming challenges including packing large vectors, handling expensive rotations, and correctly implementing complex strided convolutions. This makes programming FHE inferences prone to poor performance and errors. In this paper we overcome these challenges with Orion, an automated optimizing FHE compiler for neural inference. Orion automatically maps PyTorch-specified networks to FHE, handling common layer types and arbitrary tensor shapes and strides. Moreover, we develop novel optimizations that balance dense FHE vector packing, efficient rotations, and minimize operations to improve performance. We have implemented Orion, which will be open sourced, and evaluated it on common benchmarks used by the FHE deep learning community. We compare Orion to multiple state-of-the-art solutions and report iso-accuracy speedups ranging from 2.7$\times$ to 20.5$\times$.
We introduce CogVLM, a powerful open-source visual language foundation model. Different from the popular shallow alignment method which maps image features into the input space of language model, CogVLM bridges the gap between the frozen pretrained language model and image encoder by a trainable visual expert module in the attention and FFN layers. As a result, CogVLM enables deep fusion of vision language features without sacrificing any performance on NLP tasks. CogVLM-17B achieves state-of-the-art performance on 10 classic cross-modal benchmarks, including NoCaps, Flicker30k captioning, RefCOCO, RefCOCO+, RefCOCOg, Visual7W, GQA, ScienceQA, VizWiz VQA and TDIUC, and ranks the 2nd on VQAv2, OKVQA, TextVQA, COCO captioning, etc., surpassing or matching PaLI-X 55B. Codes and checkpoints are available at //github.com/THUDM/CogVLM.
In recent years, the influence of cognitive effects and biases on users' thinking, behaving, and decision-making has garnered increasing attention in the field of interactive information retrieval. The decoy effect, one of the main empirically confirmed cognitive biases, refers to the shift in preference between two choices when a third option (the decoy) which is inferior to one of the initial choices is introduced. However, it is not clear how the decoy effect influences user interactions with and evaluations on Search Engine Result Pages (SERPs). To bridge this gap, our study seeks to understand how the decoy effect at the document level influences users' interaction behaviors on SERPs, such as clicks, dwell time, and usefulness perceptions. We conducted experiments on two publicly available user behavior datasets and the findings reveal that, compared to cases where no decoy is present, the probability of a document being clicked could be improved and its usefulness score could be higher, should there be a decoy associated with the document.
Imitation Learning (IL) is a sample efficient paradigm for robot learning using expert demonstrations. However, policies learned through IL suffer from state distribution shift at test time, due to compounding errors in action prediction which lead to previously unseen states. Choosing an action representation for the policy that minimizes this distribution shift is critical in imitation learning. Prior work propose using temporal action abstractions to reduce compounding errors, but they often sacrifice policy dexterity or require domain-specific knowledge. To address these trade-offs, we introduce HYDRA, a method that leverages a hybrid action space with two levels of action abstractions: sparse high-level waypoints and dense low-level actions. HYDRA dynamically switches between action abstractions at test time to enable both coarse and fine-grained control of a robot. In addition, HYDRA employs action relabeling to increase the consistency of actions in the dataset, further reducing distribution shift. HYDRA outperforms prior imitation learning methods by 30-40% on seven challenging simulation and real world environments, involving long-horizon tasks in the real world like making coffee and toasting bread. Videos are found on our website: //tinyurl.com/3mc6793z
With the rapid development of the internet, online social media welcomes people with different backgrounds through its diverse content. The increasing usage of emoji becomes a noticeable trend thanks to emoji's rich information beyond cultural or linguistic borders. However, the current study on emojis is limited to single emoji prediction and there are limited data resources available for further study of the interesting linguistic phenomenon. To this end, we synthesize a large text-emoji parallel corpus, Text2Emoji, from a large language model. Based on the parallel corpus, we distill a sequence-to-sequence model, EmojiLM, which is specialized in the text-emoji bidirectional translation. Extensive experiments on public benchmarks and human evaluation demonstrate that our proposed model outperforms strong baselines and the parallel corpus benefits emoji-related downstream tasks.
Besides entity-centric knowledge, usually organized as Knowledge Graph (KG), events are also an essential kind of knowledge in the world, which trigger the spring up of event-centric knowledge representation form like Event KG (EKG). It plays an increasingly important role in many machine learning and artificial intelligence applications, such as intelligent search, question-answering, recommendation, and text generation. This paper provides a comprehensive survey of EKG from history, ontology, instance, and application views. Specifically, to characterize EKG thoroughly, we focus on its history, definitions, schema induction, acquisition, related representative graphs/systems, and applications. The development processes and trends are studied therein. We further summarize perspective directions to facilitate future research on EKG.
For better user experience and business effectiveness, Click-Through Rate (CTR) prediction has been one of the most important tasks in E-commerce. Although extensive CTR prediction models have been proposed, learning good representation of items from multimodal features is still less investigated, considering an item in E-commerce usually contains multiple heterogeneous modalities. Previous works either concatenate the multiple modality features, that is equivalent to giving a fixed importance weight to each modality; or learn dynamic weights of different modalities for different items through technique like attention mechanism. However, a problem is that there usually exists common redundant information across multiple modalities. The dynamic weights of different modalities computed by using the redundant information may not correctly reflect the different importance of each modality. To address this, we explore the complementarity and redundancy of modalities by considering modality-specific and modality-invariant features differently. We propose a novel Multimodal Adversarial Representation Network (MARN) for the CTR prediction task. A multimodal attention network first calculates the weights of multiple modalities for each item according to its modality-specific features. Then a multimodal adversarial network learns modality-invariant representations where a double-discriminators strategy is introduced. Finally, we achieve the multimodal item representations by combining both modality-specific and modality-invariant representations. We conduct extensive experiments on both public and industrial datasets, and the proposed method consistently achieves remarkable improvements to the state-of-the-art methods. Moreover, the approach has been deployed in an operational E-commerce system and online A/B testing further demonstrates the effectiveness.
We present Generative Adversarial Capsule Network (CapsuleGAN), a framework that uses capsule networks (CapsNets) instead of the standard convolutional neural networks (CNNs) as discriminators within the generative adversarial network (GAN) setting, while modeling image data. We provide guidelines for designing CapsNet discriminators and the updated GAN objective function, which incorporates the CapsNet margin loss, for training CapsuleGAN models. We show that CapsuleGAN outperforms convolutional-GAN at modeling image data distribution on the MNIST dataset of handwritten digits, evaluated on the generative adversarial metric and at semi-supervised image classification.